Vai al contenuto principale della pagina
Autore: | Swartz Charles <1938-> |
Titolo: | Multiplier convergent series [[electronic resource] /] / Charles Swartz |
Pubblicazione: | Singapore ; ; Hackensack, NJ, : World Scientific, 2009 |
Descrizione fisica: | 1 online resource (264 p.) |
Disciplina: | 515.35 |
515/.24 | |
Soggetto topico: | Convergence |
Multipliers (Mathematical analysis) | |
Orlicz spaces | |
Series, Arithmetic | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references (p. 245-249) and index. |
Nota di contenuto: | Preface; Contents; 1. Introduction; 2. Basic Properties of Multiplier Convergent Series; 3. Applications of Multiplier Convergent Series; 4. The Orlicz-Pettis Theorem; 5. Orlicz-Pettis Theorems for the Strong Topology; 6. Orlicz-Pettis Theorems for Linear Operators; 7. The Hahn-Schur Theorem; 8. Spaces of Multiplier Convergent Series and Multipliers; 9. The Antosik Interchange Theorem; 10. Automatic Continuity of Matrix Mappings; 11. Operator Valued Series and Vector Valued Multipliers; 12. Orlicz-Pettis Theorems for Operator Valued Series; 13. Hahn-Schur Theorems for Operator Valued Series |
14. Automatic Continuity for Operator Valued MatricesAppendix A. Topological Vector Spaces; Appendix B. Scalar Sequence Spaces; Appendix C. Vector Valued Sequence Spaces; Appendix D. The Antosik-Mikusinski Matrix Theorems; Appendix E. Drewnowski's Lemma; References; Index | |
Sommario/riassunto: | If ? is a space of scalar-valued sequences, then a series ?j xj in a topological vector space X is ?-multiplier convergent if the series ?j=18 tjxj converges in X for every {tj} e?. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in ?1 are also developed for multiplie |
Titolo autorizzato: | Multiplier convergent series |
ISBN: | 1-282-44092-6 |
9786612440922 | |
981-283-388-9 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910781093603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |