Vai al contenuto principale della pagina

Data Clustering / / Niansheng Tang. editor



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Data Clustering / / Niansheng Tang. editor Visualizza cluster
Pubblicazione: London : , : IntechOpen, , 2022
Descrizione fisica: 1 online resource (126 pages)
Disciplina: 519.535
Soggetto topico: Multivariate analysis
Cluster analysis
Persona (resp. second.): TangNiansheng
Nota di contenuto: 1. Introductory Chapter: Development of Data Clustering -- 2. Clustering Algorithms: An Exploratory Review -- 3. Clustering by Similarity of Brazilian Legal Documents Using Natural Language Processing Approaches -- Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data -- 5. Application of Jump Diffusion Models in Insurance Claim Estimation -- 6. Fuzzy Perceptron Learning for Non-Linearly Separable Patterns -- . Semantic Map: Bringing Together Groups and Discourses.
Sommario/riassunto: In view of the considerable applications of data clustering techniques in various fields, such as engineering, artificial intelligence, machine learning, clinical medicine, biology, ecology, disease diagnosis, and business marketing, many data clustering algorithms and methods have been developed to deal with complicated data. These techniques include supervised learning methods and unsupervised learning methods such as density-based clustering, K-means clustering, and K-nearest neighbor clustering. This book reviews recently developed data clustering techniques and algorithms and discusses the development of data clustering, including measures of similarity or dissimilarity for data clustering, data clustering algorithms, assessment of clustering algorithms, and data clustering methods recently developed for insurance, psychology, pattern recognition, and survey data.
Titolo autorizzato: Data Clustering  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910687976703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui