Vai al contenuto principale della pagina

Cost-Efficient Wastewater Treatment Technologies : Natural Systems / / Mahmoud Nasr and Abdelazim M. Negm, editors ; with contributions by O. Alizadeh [and forty-six others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Cost-Efficient Wastewater Treatment Technologies : Natural Systems / / Mahmoud Nasr and Abdelazim M. Negm, editors ; with contributions by O. Alizadeh [and forty-six others] Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2023]
©2023
Descrizione fisica: 1 online resource (384 pages)
Disciplina: 628.3
Soggetto topico: Sewage - Purification - Technological innovations
Sewage - Purification - Cost effectiveness
Persona (resp. second.): NasrMahmoud
NegmAbdelazim M.
AlizadehO
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Intro -- Series Preface -- Preface -- Contents -- Part I: Introduction -- Introduction to ``Cost-efficient Wastewater Treatment Technologies: Natural Systems´´ -- 1 Introduction -- 2 Waste Stabilization Ponds (WSPs) -- 3 Microalgae for Phycoremediation -- 4 Anaerobic Treatment of Sewage -- 5 Adsorption Technology in Wastewater Treatment -- 6 Green Nanomaterial for Environmental Remediation -- 7 Deactivation of Waterborne Pathogens in Natural Eco-Systems -- 8 Treated Wastewater Reuse for Irrigation -- 9 Agricultural Drainage Water (ADW) Management -- 10 Treated Wastewater Reuse for Irrigation: A Case Study in Mediterranean Rim -- 11 Agricultural Drainage Water (ADW) Management: A Danish Case Study -- 12 Surface Water Quality: A Case Study of Hron River -- 13 Conclusions -- References -- Part II: Concepts and Knowledge of Natural-Based Wastewater Treatment -- Nature-Based Treatment Systems for Reclaimed Water Use in Agriculture in Mediterranean Countries -- 1 Introduction -- 2 Reclaimed Water Use in Agriculture in Med Region -- 2.1 State of Play -- 2.2 Technical and Regulatory Aspects -- 2.2.1 Technical Aspects -- 2.2.2 Regulatory Aspects -- 2.3 Social Aspects -- 2.4 Environmental Aspects -- 2.5 Health Risks -- 2.5.1 Heavy Metals -- 2.5.2 Emerging Contaminant -- 2.5.3 Microbial Parameters -- 3 Natural Based Treatment Systems in Med Countries -- 3.1 Design, Construction, and Operation -- 3.2 Efficiencies -- 3.2.1 CW Located in San Michele di Ganzaria in Sicily -- 3.2.2 Hybrid-CW Located at the IKEA Store in Sicily -- 4 Conclusions and Recommendations -- References -- Treatment Systems for Agricultural Drainage Water and Farmyard Runoff in Denmark: Case Studies -- 1 Introduction -- 1.1 Agriculture Challenges in Northwestern Europe -- 1.2 Tile Drainage Water -- 1.3 Nutrient Losses in Tile Drains -- 2 State of the Art -- 2.1 Constructed Wetlands.
2.2 Denitrifying Bioreactors -- 2.3 Filter Systems -- 3 Case Studies -- 3.1 Surface-Flow Constructed Wetland: Fillerup -- 3.2 Surface-Flow Constructed Wetland Paired with Woodchip Bioreactor: Ryaa -- 3.3 Filter System: Rodstenseje -- 4 Conclusions -- 5 Recommendations -- References -- Cost-Effective Adsorbents for Reduction of Conventional and Emerging Pollutants in Modified Natural Wastewater Treatment -- 1 Introduction -- 1.1 Adsorption Process -- 1.2 Types of Adsorption Processes -- 1.2.1 Physical Adsorption -- 1.2.2 Chemical Adsorption -- 1.3 Adsorption Mechanisms -- 1.3.1 Physisorption -- 1.3.2 Chemisorption -- Chelation -- Complexation -- 1.3.3 Ion Exchange -- 1.3.4 Precipitation -- 1.3.5 Oxidation-Reduction -- 1.4 Operating Conditions and Factors Affecting Adsorption -- 1.5 Desorption and Reactivation of Adsorbents -- 2 Adsorption Models and Scale-up Considerations -- 2.1 An Introduction to Fixed-Bed Versus Batch Adsorption Processes -- 2.2 Batch Processes -- 2.2.1 Equilibrium Models -- Linear Henry Isotherm -- Langmuir Isotherm -- Freundlich Isotherm -- Temkin Isotherm -- BET Isotherm -- 2.2.2 Kinetic Models -- Diffusional Mass Transfer Models -- Adsorption Reaction Models -- Pseudo-First-Order Model -- Pseudo-Second-Order Model -- Elovich Model -- 2.2.3 Adsorption Thermodynamics -- 2.2.4 Scale-up Considerations for Batch Adsorption -- 2.3 Continuous Processes (Fixed Bed) -- 2.3.1 Characteristics of Continuous Adsorption -- Bed Density (ρB) -- Bed Porosity (εB) -- Bed Volume (VB) -- Flow Velocity (vF) -- Residence Time (tr) -- 2.3.2 Breakthrough Curve Models -- Bohart-Adams Model -- Thomas Model -- Wolborska Model -- Yoon-Nelson Model -- 2.3.3 Scale-Up Considerations for Continuous Adsorption -- Mass Transfer Zone (MTZ) Model -- Length of Unused Bed (LUB) Model -- 3 Low-Cost Adsorbents -- 3.1 Natural Materials.
3.2 Agricultural Wastes/By-Products -- 3.3 Industrial Wastes/By-Products -- 4 Modification of Low-Cost Adsorbents -- 5 Conclusion -- 6 Recommendation -- References -- Environmental-Friendly and Cost-Effective Agricultural Wastes for Heavy Metals and Toxicants Removal from Wastewater -- 1 Introduction -- 2 Wastewater Sources and Estimations in Developing Countries -- 3 The Contamination and the Need for Reusing Wastewater in Developing Countries -- 4 Common Methods and Materials for Wastewater Treatment -- 4.1 Physical Methods of Removing Pollutants -- 4.2 Chemical Methods of Removing Pollutants -- 4.3 Biological Methods -- 5 Low-Cost and Eco-Friendly Agricultural Wastes-Derived Absorbents -- 5.1 Activated Carbon (AC) Derived from Agricultural Wastes -- 5.2 Biosorbents from Agricultural Wastes -- 6 Conclusion -- References -- Green Synthesized Iron Nanoparticles for Environmental Management: Minimizing Material and Energy Inputs -- 1 Introduction -- 2 Green Chemistry -- 2.1 Principles of Green Chemistry -- 2.2 Merits of Green Chemistry -- 3 Green Synthesized Iron Nanoparticle -- 3.1 Properties of Iron Nanoparticles -- 3.2 Crystal Structure and Atomic Arrangement -- 3.3 Methods of Synthesis -- 3.3.1 Plant Extracts -- 3.3.2 Tea Extracts -- 3.3.3 Biomolecules -- 3.3.4 Microorganisms -- 3.4 Mechanism Behind the Green Synthesis of Iron Nanoparticles -- 4 Applications of Iron Nanoparticles -- 4.1 Wastewater Treatment -- 4.1.1 Dye Removal -- 4.1.2 Heavy Metal Removal -- 4.2 Degradation of Pollutants -- 4.3 Detection of Pesticide Contamination -- 5 Critical Approach to Green Synthesized Iron Nanoparticle -- 6 Conclusion -- 7 Future Prospects -- References -- Part III: Natural Wastewater Treatment Technologies -- Overview of Waste Stabilization Ponds in Developing Countries -- 1 Introduction -- 2 Types of Waste Stabilization Ponds (WSPs) -- 2.1 Anaerobic Ponds.
2.2 Facultative Ponds -- 2.3 Maturation Ponds -- 2.4 Other Pond Types -- 3 Design, Operation, and Maintenance -- 3.1 Pond Location, Construction, and Design -- 3.2 Operation and Maintenance of WSPs -- 4 Effluent Disinfection and Nutrient Removal -- 4.1 Pathogen Removal -- 4.2 Nitrogen and Phosphorus Removal -- 4.3 Heavy Metal and Micropollutant Removal -- 5 Advantages and Disadvantages of WSPs -- 6 Conclusions -- References -- Plasma Technology: A Novel Approach for Deactivating Pathogens in Natural Eco-Systems -- 1 Introduction -- 2 Thermal Plasma -- 3 Non-thermal Plasma -- 4 Generation Methods of Different Non-thermal Plasma -- 4.1 Direct Current Glow Discharge -- 4.2 Radio Frequency Discharge -- 4.3 Microwave Plasma -- 4.4 Dielectric Barrier Discharge -- 4.5 Atmospheric Pressure Plasma Jet -- 4.6 Corona Discharge -- 4.7 Pulsed Arc Discharge -- 5 Electrohydraulic Plasma Generation -- 5.1 Pulsed Corona Electrohydraulic Discharge (PCED) -- 5.2 Pulsed Arc Electrohydraulic Discharge (PAED) -- 6 Benefits and Current Challenges of Plasma in Environmental Applications -- 7 Mechanism of Atmospheric Cold Plasma for Bactericidal Activities -- 8 Conclusion -- 9 Future Perspectives in the Study -- References -- Application of Anaerobic Hybrid Filters for Sewage Treatment -- 1 Introduction -- 1.1 Anaerobic Sewage Treatment Evolution -- 1.2 Anaerobic vs. Aerobic Processes -- 1.3 Complementary Low-Cost Treatment Systems -- 1.4 Anaerobic Technologies for Sewage Treatment in Temperate Climates -- 1.4.1 UASB Reactor -- 1.4.2 Anaerobic Biofilm Reactors-Attached Growth -- 1.4.3 Anaerobic Filter Reactor -- 1.4.4 Anaerobic Hybrid Filter (AHF) -- 1.5 Temperature Effect -- 2 Laboratory Experiences -- 2.1 Experimental Work -- 2.2 Effluent Characterization -- 2.2.1 Materials and Methods -- 2.2.2 Startup of Reactors and Reactor Operation -- 2.3 Results.
2.3.1 Startup Behavior -- 2.3.2 COD and Suspended Solids Removal -- 2.3.3 COD and Suspended Solids Concentrations -- 2.3.4 Removal of Nutrients -- 2.3.5 System Stability -- 2.3.6 Biogas Production and Characteristics -- 2.3.7 Effect of the Packing Medium -- 2.4 Reactor Characterization -- 2.5 Methanogenic Activity -- 2.6 Bacterial Physiologies -- 2.7 Conclusion -- 3 Case Study: WWTP Experimental AHF Treatment of Community Sewage -- 3.1 Plant Description -- 3.2 Objectives -- 3.3 Full-Scale Performance of the AHF System -- 3.3.1 Technical Description -- 3.3.2 Startup of the System -- 3.4 WWTP Performance: Results and Discussion -- 3.5 Economic Performance -- 3.6 Discussion and Conclusions -- References -- Impact of Combined Sewer Overflows Events on Recipient Water Quality -- 1 Introduction -- 2 Mathematical and Numerical Models -- 2.1 Modelling of Quantity and Water Quality of Surface Streams -- 2.2 Methods Used for Evaluating the Effect of Wastewater on the Receiving Water -- 3 Case Study Bansk Bystrica: Hron River -- 3.1 Overall Goals of the Study -- 3.2 Runoff Modelling from the Urban Catchment of the Bansk Bystrica Town -- 3.3 Water Quality Modelling in the Receiving Hron River -- 3.4 CSO Spills Modelling -- 4 Results -- 4.1 Results of Water Quality Simulation in the Hron River -- 4.1.1 Results of Hydrodynamic Modelling -- 4.1.2 Results of Water Quality Modelling -- 4.2 Results of Modelling of the Impact of CSO Discharge on the Recipient -- 5 Discussion -- 6 Conclusions -- 7 Future Aspects -- References -- Part IV: Wastewater Management and Sustainability -- Water-Energy Nexus in Wastewater Management for Irrigation -- 1 Introduction -- 2 Water-Energy Nexus -- 2.1 Dimensions of Water-Energy Nexus -- 2.1.1 Environmental Dimension -- 2.1.2 Technological Dimension -- 2.1.3 Economic Dimension -- 2.1.4 Social Dimension -- 2.1.5 Political Dimension.
3 Wastewater Management Strategies.
Titolo autorizzato: Cost-efficient wastewater treatment technologies  Visualizza cluster
ISBN: 3-031-12918-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910639896403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Handbook of environmental chemistry ; ; Volume 117.