Vai al contenuto principale della pagina

The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: The supercontinuum laser source : the ultimate white light / / Robert R. Alfano, editor Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2022]
©2022
Edizione: 4th ed.
Descrizione fisica: 1 online resource (646 pages)
Disciplina: 621.366
Soggetto topico: Laser pulses, Ultrashort
Nonlinear optics
Persona (resp. second.): AlfanoRobert R. <1941->
Note generali: Includes index.
Nota di contenuto: Intro -- Foreword -- Preface -- Supercontinuum Generated in Different Media -- Supercontinuum Light Vector Vortex Beams with OAM (L == 1,2,3) in Air -- Conical Emission and Self-Phase Modulation Light from Vector Vortex Beam with OAM (L == 2) in BK7 Glass -- Supercontinuum Light from Calcite -- Supercontinuum Light Generated from Methanol Liquid -- Supercontinuum Light Generated from Plasma Ablation in Air from Copper Foil -- Contents -- Contributors -- 1 Theory of Self-Phase Modulation and Spectral Broadening -- 1.1 Introduction -- 1.2 Optical-Field-Induced Refractive Indices -- 1.2.1 Electronic Mechanism -- 1.2.2 Vibrational Contribution -- 1.2.3 Rotation, Libration, and Reorientation of Molecules -- 1.2.4 Electrostriction, Molecular Redistribution, and Molecular Collisions -- 1.2.5 Other Mechanisms -- 1.3 Simple Theory of Self-Phase Modulation and Spectral Broadening -- 1.4 More Rigorous Theory of Self-Phase Modulation and Spectral Superbroadening -- 1.5 Self-Focusing and Self-Phase Modulation -- 1.5.1 Self-Phase Modulation with Quasisteady-State Self-Focusing -- 1.5.2 Spectral Superbroadening of Ultrashort Pulses in Gases -- 1.5.3 Self-Phase Modulation with Transient Self-Focusing -- 1.6 Conclusion -- References -- 2 Supercontinuum Generation in Condensed Matter -- 2.1 Introduction -- 2.2 Simplified Model -- 2.3 Experimental Arrangement for SPM Generation -- 2.4 Generation of Supercontinuum in Solids -- 2.4.1 Supercontinuum in Glasses -- 2.4.2 Supercontinuum in Quartz -- 2.4.3 Supercontinuum in NaCl -- 2.4.4 Supercontinuum in Calcite -- 2.4.5 Supercontinuum in KBr -- 2.4.6 Supercontinuum in Semiconductors -- 2.5 Generation of Supercontinuum in Liquids -- 2.5.1 Supercontinuum in H2O and D2O -- 2.5.2 Supercontinuum in CCl4 -- 2.5.3 Supercontinuum in Phosphoric Acid -- 2.5.4 Supercontinuum in Polyphosphoric Acid.
2.6 Supercontinuum Generated in Optical Fibers -- 2.7 Supercontinuum Generation in Rare-Gas Liquids and Solids -- 2.8 Supercontinuum Generation in Antiferromagnetic KNiF3 Crystals -- 2.9 Generation of Supercontinuum Near Electronic Resonances in Crystals -- 2.10 Enhancement of Supercontinuum in Water by Addition of Ions -- 2.11 Temporal Behavior of SPM -- 2.11.1 Temporal Distribution of SPM -- 2.11.2 Local Generation and Propagation -- 2.11.3 SPM Pulse Duration Reduction -- 2.12 Higher-Order Effects on Self-Phase Modulation -- 2.12.1 Self-Focusing -- 2.12.2 Dispersion -- 2.12.3 Self-Steepening -- 2.12.4 Initial Pulse Chirping -- 2.13 High-Resolution Spectra of Self-Phase Modulation in Optical Fibers -- 2.13.1 Reduced Wave Equation -- 2.13.2 Experiment -- 2.13.3 Discussion -- 2.13.4 UV Supercontinuum Lower Limit in Holey Fibers -- 2.14 High-Resolution Spectra of Cross-Phase Modulation in Optical Fibers -- 2.14.1 Reduced Wave Equation -- 2.14.2 Experiment -- 2.14.3 Discussion -- 2.15 Recent Developments of Supercontinuum Generation -- 2.15.1 Nonlinear Refractive Index of Materials Used in Supercontinuum Generation -- 2.15.2 Mid-Infrared Supercontinuum Generation Covering 1.4-13.3 m -- 2.15.3 Enhanced Bandwidth of Supercontinuum Generated in Microstructured Fibers -- 2.15.4 Deep-Ultraviolet to Mid-Infrared Supercontinuum Generation -- 2.15.5 Summary of Selected Supercontinuum Generation Since 2000 -- 2.16 Overview -- A.1 Appendix: Nonlinear Wave Equation with Group Velocity Dispersion -- References -- 3 Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers -- 3.1 Introduction -- 3.2 Basic Propagation Equation -- 3.3 Different Propagation Regimes -- 3.3.1 Dispersion-Dominant Regime -- 3.3.2 Nonlinearity-Dominant Regime -- 3.3.3 Dispersive Nonlinear Regime -- 3.4 Normal Dispersion -- 3.5 Anomalous Dispersion -- 3.5.1 Fission of High-Order Solitons.
3.5.2 Intrapulse Raman Scattering -- 3.6 Supercontinuum Generation -- 3.6.1 Supercontinuum Generation Through Soliton Fission -- 3.6.2 Supercontinuum Generation Through Modulation Instability -- 3.6.3 Supercontinuum Pumping in the Normal-GVD Region -- 3.7 Mid-Infrared and Ultraviolet Regions -- 3.7.1 Supercontinuum in the Mid-Infrared Region -- 3.7.2 Sources of Ultraviolet Radiation -- 3.8 Summary -- References -- 4 Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Propertiesof Ultrashort Pulses -- 4.1 Introduction -- 4.2 Cross-Phase Modulation Theory -- 4.2.1 Coupled Nonlinear Equations of Copropagating Pulses -- 4.2.2 Spectral Broadening Enhancement -- 4.2.3 Optical Wave Breaking and Pulse Compression Due to Cross-Phase Modulation in Optical Fibers -- 4.3 Pump-Probe Cross-Phase Modulation Experiments -- 4.3.1 Spectral Broadening Enhancement by Cross-Phase Modulation in BK-7 Glass -- 4.3.2 Induced-Frequency Shift of Copropagating Pulses -- 4.3.3 XPM-Induced Spectral Broadening and Optical Amplification in Optical Fibers -- 4.4 Cross-Phase Modulation with Stimulated Raman Scattering -- 4.4.1 Theory of XPM with SRS -- 4.4.1.1 Influence of Walk-Off on the Symmetry Properties of the Pulse Spectra -- 4.4.1.2 Contributions from Self-Phase Modulation and Cross-Phase Modulation to the Chirp of Pulses -- 4.4.2 Experiments -- 4.4.2.1 XPM Measurements with the Fiber Raman Amplification Soliton Laser -- 4.4.2.2 Generation of Picosecond Raman Pulses in Optical Fibers -- 4.4.2.3 Generation of Femtosecond Raman Pulses in Ethanol -- 4.5 Harmonic Cross-Phase Modulation Generation in ZnSe -- 4.6 Cross-Phase Modulation and Stimulated Four-Photon Mixing in Optical Fibers -- 4.7 Induced Focusing by Cross-Phase Modulation in Optical Fibers -- 4.8 Modulation Instability Induced by Cross-Phase Modulation in Optical Fibers.
4.9 Applications of Cross-Phase Modulation for Ultrashort Pulse Technology -- 4.10 Conclusion -- 4.11 Addendum -- References -- 5 Fibre-Based Supercontinuum -- 5.1 Introduction -- 5.2 Non-linear Optics in Fibres -- 5.3 Solitons, Modulational Instability and Pulse Compression -- 5.4 Stimulated Raman Effect and Ultrashort Soliton Pulse Instabilities -- 5.5 Early Studies of Supercontinuum Generation in Fibres -- 5.6 Supercontinuum Applications in Telecommunications -- 5.7 Modelling Broadband Pulse Propagation in Optical Fibres -- 5.8 The New Generation of Supercontinuum Sources -- 5.9 Femtosecond Pulse-Pumped Supercontinua -- 5.10 Modelling of Femtosecond-Pumped Supercontinua -- 5.11 Picosecond Pulse-Pumped Supercontinua -- 5.12 Modelling of Picosecond-Pumped Supercontinua -- 5.13 CW-Pumped Supercontinua -- 5.14 Modelling of CW-Pumped Supercontinua -- 5.15 Extending Wavelength Operation -- 5.16 Infrared Supercontinuum Sources -- 5.17 Ultraviolet Supercontinuum Sources -- 5.18 Developments Since 2015 -- References -- New References Since 2015*12pt -- 6 All-Normal Dispersion Fiber Supercontinuum: Principles, Design, and Applications of a Unique White Light Source -- 6.1 Introduction -- 6.2 Brief Remarks About Numerical Modeling -- 6.3 Supercontinuum Generation: Conventional vs. ANDi PCF -- 6.3.1 Spectro-Temporal Characteristics -- 6.4 Nonlinear Dynamics in ANDi Fibers -- 6.4.1 Spectrogram Analysis -- 6.4.2 Influence of Fiber and Pump Pulse Parameters -- 6.5 Noise Properties of Fiber Supercontinuum Sources -- 6.5.1 Origin of Supercontinuum Noise -- 6.5.2 Supercontinuum Noise Control by Fiber Dispersion Engineering -- 6.5.3 Supercontinuum Noise Control by Designing Fiber Geometry and Birefringence -- 6.6 Experimental Results and Fiber Designs for Various Spectral Regions -- 6.6.1 Visible and Near-IR Spectral Region -- 6.6.1.1 Photonic Crystal Fibers (PCFs).
6.6.1.2 Suspended-Core Fibers (SCF) -- 6.6.2 Deep-UV Spectral Region -- 6.6.3 Mid-Infrared Spectral Region -- 6.7 Selected Application Examples -- 6.7.1 Ultrafast Photonics -- 6.7.2 Advanced Imaging and Spectroscopy -- 6.8 Conclusion -- References -- 7 Self-Focusing and Continuum Generation in Gases -- 7.1 Introduction -- 7.2 Experimental Aspects -- 7.3 Multiphoton Ionization -- 7.4 Self-Phase Modulation -- 7.5 Saturation of the Nonlinear Response in Gases -- 7.6 Self-Focusing: (3) Becomes Large -- 7.6.1 Spectral Characteristics of Gaseous Continua -- 7.6.2 Spatial Characteristics of Gaseous Continua -- 7.6.3 Discussion -- 7.7 Conclusions -- References -- 8 Attosecond Extreme Ultraviolet Supercontinuum -- 8.1 Introduction -- 8.2 High-Order Harmonic Generation -- 8.3 Isolated Attosecond Pulse Generation with Gating Techniques -- 8.3.1 Polarization Gating -- 8.3.2 Double Optical Gating -- 8.4 Temporal Characterization of Attosecond Pulses -- 8.4.1 Principle of Attosecond Streaking -- 8.4.2 Complete Reconstruction of Attosecond Bursts -- 8.4.3 Phase Retrieval by Omega Oscillation Filtering -- 8.5 Experimental Configuration and Results -- 8.5.1 Magnetic-Bottle Electron Energy Spectrometer for Attosecond Streaking -- 8.5.2 MBES Resolution -- 8.5.3 Generation of a Single 67 as Pulse -- 8.5.4 Broadband Supercontinuum Generation with Lens Focusing -- 8.6 Route to the Generation of Single 25 as Pulses -- 8.6.1 Characterizing the Contrast of 25 as Isolated Pulses -- 8.6.2 Driving Laser Suppression with Microchannel Plate Filters -- 8.7 Conclusion and Outlook -- References -- 9 Supercontinuum in Telecom Applications -- 9.1 Introduction -- 9.2 Basic Physics of Optical Spectral Broadening and SC Generation in Fibres -- 9.3 Application of Spectral Broadening and Continuum Generation in Telecom -- 9.3.1 Pulse Compression and Short Pulse Generation.
9.3.2 Pulse Train Generation at High Repetition Rates.
Titolo autorizzato: The supercontinuum laser source  Visualizza cluster
ISBN: 9783031061974
9783031061967
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910639890203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui