Vai al contenuto principale della pagina
Autore: | Cheng Xiang (Researcher in wireless communication) |
Titolo: | MmWave massive MIMO vehicular communications / / Xiang Cheng, Shijian Gao, and Liuqing Yang |
Pubblicazione: | Cham, Switzerland : , : Springer, , [2022] |
©2022 | |
Descrizione fisica: | 1 online resource (152 pages) |
Disciplina: | 621.38456 |
Soggetto topico: | Mobile communication systems |
Mobile communication systems - Access control | |
Persona (resp. second.): | GaoShijian |
YangLiuqing | |
Nota di contenuto: | Intro -- Preface -- Contents -- Acronyms -- 1 Millimeter-Wave Vehicular Communications -- 1.1 Overview of Vehicular Communications -- 1.2 Necessity of Millimeter-Wave Technology -- 1.3 Characteristics of Millimeter-Wave Systems -- 1.4 Organization of the Monograph -- References -- 2 Millimeter-Wave Massive MIMO Vehicular Channel Modeling -- 2.1 Introduction of Vehicular Channel Model -- 2.1.1 Vehicular Channel Characteristics -- 2.1.2 Recent Vehicular Channel Model -- 2.1.3 Contributions of Proposed Vehicular Channel Model -- 2.2 A 3D Non-Stationary Vehicular Channel Model -- 2.2.1 Model-Related Parameters -- 2.2.2 Channel Impulse Response -- 2.3 Vehicular Channel Space-Time-Frequency Non-stationary Modeling -- 2.3.1 Generation of Dynamic Correlated Clusters and Static Correlated Clusters -- 2.3.2 Time-Array Evolution of Dynamic Correlated Clusters and Static Correlated Clusters -- 2.3.2.1 Initialization of Correlated Cluster Sets -- 2.3.2.2 Array Evolution of Correlated Clusters -- 2.3.2.3 Time Evolution of Correlated Clusters -- 2.3.2.4 Time-Array Evolution of Correlated Clusters -- 2.4 Simulations -- 2.4.1 Statistical Properties Analysis -- 2.4.1.1 Space-Time-Frequency Correlation Function -- 2.4.1.2 Doppler Power Spectral Density -- 2.4.2 Simulation Setting -- 2.4.3 Simulation Results of the Proposed Model -- 2.4.4 Model Validation -- 2.4.5 Model Application -- 2.5 Discussions and Summary -- References -- 3 Millimeter-Wave Vehicular Channel Estimation -- 3.1 Background -- 3.1.1 Necessity of Doubly-Selective Channel Estimator -- 3.1.2 Design Objectives and Proposed Approaches -- 3.2 System and Channel Models -- 3.2.1 System Model -- 3.2.2 Channel Models -- 3.2.3 Input-Output Relationship -- 3.3 Channel Estimation via Exploiting Double Sparsity -- 3.3.1 Proposed Training Pattern -- 3.3.2 Identification of Effective Taps. |
3.3.3 Identification of Effective Beams -- 3.3.4 Identification of Beam Amplitudes -- 3.4 Simulations -- 3.4.1 Tap Identification -- 3.4.2 NMSE in Static Wideband Channels -- 3.4.3 NMSE in Frequency-Flat Time-Varying Channels -- 3.4.3.1 NMSE in Doubly-Selective Channels -- 3.5 Discussions and Summary -- References -- 4 Generic Millimeter-Wave Multi-User Transceiver Design -- 4.1 Background -- 4.1.1 Introduction of Multi-User Massive MIMO -- 4.1.2 Design Objectives and Proposed Approach -- 4.2 System Description and Problem Formulation -- 4.2.1 System and Channel Models -- 4.2.2 Input-Output Relationship -- 4.2.3 Problem Formulation -- 4.2.4 Design Strategy -- 4.3 Mutual Information (MI) Bounds -- 4.3.1 MI Upper-Bound -- 4.3.2 MI Lower-Bound -- 4.3.3 MI Relationship -- 4.3.4 HBD Optimality -- 4.4 Transceiver Design -- 4.4.1 Analog-Domain Processing -- 4.4.1.1 MBS -- 4.4.1.2 MAS -- 4.4.1.3 Subcarrier Down-Sampling -- 4.4.2 Digital-Domain Processing -- 4.4.2.1 First-Step Digital-processing -- 4.4.2.2 Second-Step Digital-processing -- 4.5 Simulations -- 4.5.1 MI in Frequency-Selective Channels -- 4.5.2 MI Versus APS Resolution -- 4.5.3 MI Versus RF Chains -- 4.5.4 MI Versus UEs and Antennas -- 4.5.5 MI in Other Configurations -- 4.6 Discussions and Summary -- References -- 5 Millimeter-Wave Index Modulation for Vehicular Uplink Access -- 5.1 Introduction of Index Modulation (IM) -- 5.1.1 IM in Spatial-Domain -- 5.1.2 IM in Digital-Domain -- 5.1.3 IM in Beamspace-Domain -- 5.2 Wideband Generalized Beamspace Modulation (wGBM) -- 5.2.1 Design Motivation -- 5.2.2 System and Channel Models -- 5.2.3 wGBM Transceiver Over Static Channels -- 5.2.4 Performance Analysis -- 5.2.5 wGBM Accommodating Doppler -- 5.3 Extension to Multi-User Setup -- 5.3.1 Design Challenges -- 5.3.2 System Description -- 5.3.3 wGBM wMU Transceiver in Static Channels. | |
5.3.4 wGBM wMU Accommodating Doppler -- 5.4 Simulations -- 5.4.1 Energy Efficiency -- 5.4.2 Error Performance in Doubly-Selective Channels -- 5.4.3 More Test in Low Vehicular Traffic Density (VTD) Slow-Mobility Non-stationary Channels -- 5.5 Discussions and Summary -- References -- 6 Millimeter-Wave Index Modulation for Vehicular Downlink Transmission -- 6.1 Background -- 6.2 Wideband Precoded Beamspace Modulation (wPBM) -- 6.2.1 System and Channel Models -- 6.2.2 wPBM Transceiver Design -- 6.2.3 Analog-Domain Processing -- 6.2.4 Digital-Domain Processing -- 6.3 Extension to Multi-User Setup -- 6.3.1 Design Motivation -- 6.3.2 Overall Strategy -- 6.3.3 System and Channel Models -- 6.3.4 wPBM wMU Transceiver Design -- 6.4 Simulations -- 6.4.1 BER in Doubly-Selective Channels -- 6.4.2 BER in Low Vehicular Traffic Density (VTD) Slow-Mobility Non-stationary Channels -- 6.5 Discussions and Summary -- References -- Index. | |
Titolo autorizzato: | MmWave massive MIMO vehicular communications |
ISBN: | 3-030-97508-8 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910627263303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |