Vai al contenuto principale della pagina

Soil health and environmental sustainability : application of geospatial technology / / edited by Pravat Kumar Shit, [and four others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Soil health and environmental sustainability : application of geospatial technology / / edited by Pravat Kumar Shit, [and four others] Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (732 pages)
Disciplina: 929.374
Soggetto topico: Environmental management
Persona (resp. second.): ShitPravat Kumar
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Intro -- Preface -- Acknowledgments -- Contents -- Editors and Contributors -- Part I Measurement, Monitoring and Mapping of Soil and Land Resources -- 1 Open-Source Satellite Repository and Geographic Information System (GIS) for Soil Resource Mapping -- 1.1 Introduction -- 1.2 Spectral Reflectance of the Soil -- 1.3 Commonly Used Open Satellite Data -- 1.3.1 Low Resolution Satellite Data -- 1.3.2 Moderate Resolution Satellite Data -- 1.3.3 High Resolution Satellite Data -- 1.4 Other Earth Resource Satellites -- 1.4.1 Hyperspectral Satellite Systems -- 1.4.2 Digital Elevation Model (DEM) -- 1.5 Open Sources for World Soil Information -- 1.5.1 Open Source GIS Packages and Software -- 1.6 Application of RS and GIS in Soil Resource Mapping -- 1.7 Conclusion -- References -- 2 Applicability of Open Source Satellite Data and GIS for Soil Resources Inventorying and Monitoring -- 2.1 Introduction -- 2.2 Materials and Methods -- 2.2.1 Location and extent -- 2.2.2 Climate -- 2.2.3 Geomorphology -- 2.2.4 Geology -- 2.2.5 Drainage -- 2.2.6 Base Maps and Image Interpretation -- 2.2.7 Field Investigations -- 2.2.8 Laboratory Characterization of Soils -- 2.2.9 Finalization of Soil Map and Other Soil Characteristics Mapping Using GIS -- 2.3 Results and Discussion -- 2.3.1 Land Utilization/Land Use Land Cover Mapping -- 2.3.2 Landform Mapping -- 2.3.3 Soil and Soil Site Characteristics Mapping -- 2.4 Conclusion -- References -- 3 Application of Discrete Element Method Simulation in Environmental Modeling -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 Discrete Element Method -- 3.2.2 Simulation Setup -- 3.2.3 Soil Sample Preparation -- 3.3 Case Study -- 3.3.1 Effect of Tire Compaction on Soil -- 3.3.2 Effect of Vibro Compaction on the Soil -- 3.4 Conclusion -- References.
4 Geospatial Techniques and Methods for Sustainability in Agricultural Management -- 4.1 Introduction -- 4.2 Using Geospatial Techniques for Decision Making in Agriculture -- 4.3 Spatial Techniques in Agriculture: Data Acquisition -- 4.3.1 Crop Spatial Data -- 4.3.2 Detection and Mapping Techniques for Agricultural Soils -- 4.4 Geospatial Techniques in Agriculture: Data Treatment and Management zones -- 4.4.1 Classical Criteria for Identifying Management zones -- 4.4.2 Using Soil-Plant Spatial Relations to Identify Management zones -- 4.5 Conclusions -- References -- 5 Soil and Vegetation in Pachmarhi Biosphere Reserve and Their Correlation -- 5.1 Introduction -- References -- 6 Salt Affected Soils: Global Perspectives -- 6.1 Introduction -- 6.2 Global Distribution and Occurrence -- 6.3 Causes and Drivers for Salinization/Sodification -- 6.4 Definition and Characteristics of SAS -- 6.4.1 Saline Soil -- 6.4.2 Sodic Soil -- 6.5 Salt Affected Soils and Crop Production -- 6.6 Management Options -- 6.6.1 Agronomic Practices for Saline Soil -- 6.6.2 Subsurface Drainage (SSD) for Rehabilitation of Continental Saline Soil with a Shallow Water Table -- 6.6.3 Land Shaping Technology -- 6.6.4 Bio-Drainage -- 6.6.5 Gypsum and Alternate Reclamation Technology for Sodic Soil and Water -- 6.6.6 Crop Management and Salt-Tolerant Varieties -- 6.7 Economic Importance of Salt-Affected Soil World-Wise -- 6.8 Conclusions and Way Forward -- References -- 7 Application of Remote Sensing and GIS Techniques in Assessment of Salt Affected Soils for Management in Large Scale Soil Survey -- 7.1 Introduction -- 7.2 Development of Salt-Affected Soils -- 7.3 Characterization and Identification of Salt-Affected Soils -- 7.4 Classification of Salt-Affected Soils -- 7.4.1 Saline Soils -- 7.4.2 Saline-Sodic Soils -- 7.4.3 Sodic Soils -- 7.4.4 Distribution of SAS.
7.5 Soil Salinization -- 7.5.1 Types of Soil Salinity -- 7.5.2 Damage Caused by Soil Salinity -- 7.5.3 Socio-economic Impacts of Salinity -- 7.5.4 Visual Indicators of Soil Salinity -- 7.5.5 Field Assessment of Soil Salinity -- 7.5.6 Classes of Soil Salinity and Plant Growth -- 7.6 Soil Sodicity -- 7.6.1 Visual Indicators of Soil Sodicity -- 7.6.2 Field Assessment of Soil Sodicity -- 7.6.3 Laboratory Assessment of Soil Sodicity -- 7.6.4 Sodicity and Soil Structure -- 7.7 Remote Sensing for Soil Affected Soil Mapping -- 7.7.1 Remote Sensing Data -- 7.7.2 Methodology -- 7.7.3 Detection of Soil Salinity by Remote Sensing -- 7.7.4 Salinity Mapping and Monitoring -- 7.7.5 Delineation of Salt-Affected Soils in India -- 7.7.6 Constraints in Remote Sensing of SAS Mapping -- 7.8 Management of Salt Affected Soils Using Remote Sensing -- 7.9 Conclusion -- References -- 8 Status and Challenges of Monitoring Soil Erosion in Croplands of Arid Regions -- 8.1 Introduction -- 8.2 Overview of Methods Used for Monitoring Runoff and Soil Erosion from Arable/Agricultural Lands -- 8.2.1 Assessment of Soil Erosion at Different Scales from Agricultural/Arable Land -- 8.2.2 Devices and Methods Used for Measurement or Estimation of Soil Erosion -- 8.3 Case Study of Soil Erosion Monitoring in an Indian Arid Region -- 8.3.1 Overview of Study Area -- 8.3.2 Methodology -- 8.3.3 Results and Discussion -- 8.3.4 Conclusions of the Case Study -- 8.4 Challenges and Issues in Regular Monitoring of Soil Erosion in Arid Climate -- 8.4.1 High Speed Winds -- 8.4.2 Infrequent Rainy Days and Runoff -- 8.4.3 Shallow Soil Thickness -- 8.4.4 Changing Rainfall Patterns Due to Climate Change -- 8.4.5 Unfavorable Soil Workability Conditions -- 8.5 Future Needs and Concluding Remarks -- References.
9 Application of RUSLE and MUSLE Models to Assess Erosion Sensitivity of a Sub-watershed Using ArcSWAT Interface -- 9.1 Introduction -- 9.2 Materials and Methods -- 9.2.1 Description of Study Area -- 9.3 Models -- 9.3.1 Revised Universal Soil Loss Equation -- 9.3.2 MUSLE Model -- 9.4 Methods Used to Estimate Various Model Parameters -- 9.4.1 Rainfall Erosivity Factor (R) -- 9.4.2 Soil Erodibility Factor (K) -- 9.4.3 Soil Erodibility Factor Computation -- 9.4.4 Slope Length Factor (L) -- 9.4.5 Unit Stream Power Erosion and Deposition (USPED) Model -- 9.4.6 Digital Elevation Model (DEM) -- 9.4.7 Slope Steepness Factor (S) -- 9.4.8 Cover Management Factor/Vegetative Cover Factor (C) -- 9.4.9 Land Use/Land Cover Map -- 9.4.10 Conservation/Support Practice Factor (P) -- 9.5 Gross Soil Erosion Estimation -- 9.6 Erosion Susceptibility Map -- 9.6.1 ArcSWAT: An ArcGIS Extension -- 9.7 Preparation of Arcswat Input Data -- 9.7.1 Land Use/Land Cover Database Input Files -- 9.7.2 Soil Database Input Files -- 9.7.3 ArcSWAT Weather Data Input Files -- 9.8 ArcSWAT Model Operation -- 9.8.1 SWAT Project Set-Up -- 9.8.2 Watershed Delineator -- 9.8.3 Hydrologic Response Unit (HRU) Analysis -- 9.8.4 Write Input Tables -- 9.8.5 Edit SWAT Input -- 9.8.6 SWAT Simulation -- 9.8.7 SWAT Model Calibration -- 9.8.8 Collection of Suspended Sediment Samples -- 9.8.9 Sediment Concentration -- 9.8.10 SWAT Model Validation -- 9.8.11 Model Evaluation Statistics -- 9.8.12 Sediment Delivery Ratio -- 9.9 Results and Discussion -- 9.9.1 Components of RUSLE Model -- 9.9.2 Soil Erodibility Factor (K) -- 9.9.3 Crop/Cover Management Factor (C) -- 9.9.4 Gross Soil Erosion Using RUSLE Model -- 9.9.5 SWAT Model Simulation Results -- 9.10 Conclusion -- References.
10 Delineation of Irrigation Management Zones Using Geographical Weighted Principal Component Analysis and Possibilistic Fuzzy C-Means Clustering Approach -- 10.1 Introduction -- 10.2 Materials and Methods -- 10.2.1 Site Description -- 10.2.2 Soil Sampling and Analysis -- 10.2.3 Descriptive and Geostatistical Analysis -- 10.2.4 Principal Components Analysis and Fuzzy Clustering -- 10.3 Results and Discussion -- 10.3.1 Descriptive Statistics of Soil Hydro-Physical Properties -- 10.3.2 Relationship Among Soil Hydro-Physical Properties -- 10.3.3 Geostatistical Interpolation -- 10.3.4 Determining Clustering Variables for Irrigation Management Zones -- 10.3.5 Delineating Irrigation Management Zones -- 10.3.6 Application of IMZ Results -- 10.4 Conclusions -- References -- Part II Geospatial Modeling and Risk Assessment -- 11 Soil Quality Assessment: Integrated Study on Standard Scoring Functions and Geospatial Approach -- 11.1 Introduction -- 11.2 Materials and Methods -- 11.2.1 Site Description -- 11.2.2 Field and Laboratory Procedures -- 11.2.3 Integrated Quality Index (IQI) and Weight Assignment -- 11.2.4 Spatial Variability of an Integrated Quality Index (IQI) -- 11.3 Results and Discussion -- 11.3.1 Indicators Among Different Depths -- 11.3.2 Minimum Data Set Selection -- 11.3.3 Weight Assignment Values of Every Soil Quality Indicator -- 11.3.4 Integrated Quality Index (IQI) Calculation -- 11.3.5 Spatial Analyses of Soil Quality Index (SQI) -- 11.4 Conclusions -- References -- 12 Spatial Pattern Analysis and Identifying Soil Pollution Hotspots Using Local Moran's I and GIS at a Regional Scale in Northeast of Iran -- 12.1 Introduction -- 12.2 Study Area -- 12.3 Methods -- 12.3.1 Sampling and Analysis -- 12.3.2 Statistical Analysis -- 12.4 Results -- 12.4.1 Exploratory Analysis of Soil Variables -- 12.4.2 Pearson's Correlation.
12.4.3 Spatial Autocorrelation.
Titolo autorizzato: Soil health and environmental sustainability  Visualizza cluster
ISBN: 3-031-09270-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910616369803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Environmental Science and Engineering