Vai al contenuto principale della pagina
Titolo: | Gut microbiome in neurological health and disorders / / Amit Kumar Tripathi, Malini Kotak, editors |
Pubblicazione: | Singapore : , : Springer, , [2022] |
©2022 | |
Descrizione fisica: | 1 online resource (315 pages) |
Disciplina: | 612.32 |
Soggetto topico: | Gastrointestinal system - Microbiology |
Persona (resp. second.): | TripathiAmit Kumar |
KotakMalini | |
Nota di contenuto: | Intro -- Preface -- Contents -- About the Editors -- Chapter 1: Gut Microbiome Brain Axis: An Introduction -- 1.1 Introduction -- 1.2 Gut Microbiota and Brain -- 1.3 Gut Microbiota and Immune System -- 1.4 Gut Microbiota and Aging -- 1.5 Gut Microbiota and Diseases -- 1.6 Gut Microbiota and Fatty Acids -- 1.7 Gut Microbiota and Pre/Probiotics -- References -- Chapter 2: Cross Talk Between Gut Microbiota and Host Immune Cells -- 2.1 Introduction -- 2.2 Gut Microbiota and Immune System Interaction During Development -- 2.3 Translocation of Microbes in the Gastrointestinal Tract -- 2.4 Communication Between the Host´s Immune Cells and the Intestinal Microbiome -- 2.4.1 Dendritic Cell Relationship with Gut Bacteria -- 2.4.2 IgA and Gut Microbiome -- 2.4.3 Microbiota-Mediated Regulation of Treg Cells, Th17 Cells, and Th1 Cells -- 2.4.4 The Gut Microbiome and Innate Lymphoid Cells -- 2.5 Microbial Metabolite-Mediated Modulation of Host Immunity -- 2.6 Probiotics: An Immune Modulator -- 2.7 Conclusion and Perspectives -- References -- Chapter 3: Microbiota-Gut-Brain Axis and Neurodegenerative Disorder -- 3.1 Introduction -- 3.2 The Gut Microbiome and CNS Connection -- 3.3 Development and Influence of Gut Microbiome -- 3.4 The Gut Microbes and Brain Development -- 3.5 The Gut Microbiota in Neurodegenerative Disorders -- 3.6 A Clinical Connection Between the Gut Microbes and Neurodegenerative Disorders -- 3.7 Routes of Communication -- 3.8 Conclusions and Future Perspectives: A New Hope? -- References -- Chapter 4: Gut Microbiota Regulation of Cerebral Stroke -- 4.1 Introduction -- 4.2 Microbiota Gut-Brain Axis and Its Environmental Axis -- 4.3 Stroke-Induced Gut Dysfunction and Translocation of Gut Microbiota -- 4.4 Western Dietary Pattern and Related Risk Factor for Stroke-Induced Gut Microbiota Alteration. |
4.5 Stroke-Induced Gut Inflammatory Immune Response and Brain Infiltration -- 4.6 SCFAs Contributes to Protection Against Cerebral Ischemic Stroke -- 4.7 Stroke Dysbiosis Index Scale for Diagnosis and Prognosis of Stroke Incidence -- 4.8 Regulatory Role of Gut Microbiome in Blood-Brain Barrier Breakage After Stroke -- 4.9 Engineered Microbiota Used for Therapeutic Treatment of Ischemic Stroke -- 4.10 Tools for Regulating Microbiome Gene Expression -- 4.11 Psychobiotics -- 4.12 Neuroprotective Potential of Monobacteriotherapy -- 4.13 Fecal MicroRNA Regulation of Gut Microbiota -- 4.14 Conclusion and Future Directions -- References -- Chapter 5: Aging: Impact of Gut Microbiota -- 5.1 Introduction -- 5.2 Aging Gut Microbiota: Composition -- 5.3 Aging Gut Microbiota: Diet -- 5.4 Aging Gut Microbiota: Pre/Probiotics -- 5.5 Aging Gut Microbiota: Diseases -- 5.6 Conclusion and Future Prospects -- References -- Chapter 6: Gut Microbiome Regulation of Appetite and Role in Neurological Disorders -- 6.1 Introduction -- 6.2 Roles of Intestinal Bacteria -- 6.3 Metabolism -- 6.4 Resistance to Colonization -- 6.5 Appetite Control in Homeostatic Model -- 6.6 Host Energy Homeostasis and Brain -- 6.7 Hedonic Versus Homeostatic Regulation -- 6.8 Bowel Transmission to the Brain -- 6.9 Gut Microbiome Regulates the Appetite -- 6.10 Bacterial Growth Caused by Nutrients -- 6.11 Host Control -- 6.12 Mechanistic Impact of Bacteria from the Gut -- 6.13 The Western Diet Influences the Gut Microbiota -- 6.14 Role of Gut Microbiome in Neurological Disorders -- 6.15 Parkinson´s Disease -- 6.16 Anxiety -- 6.17 Schizophrenia -- 6.18 Autism Spectrum Disorder -- 6.19 Multiple Sclerosis -- 6.20 Alzheimer´s Disease -- 6.21 Epilepsy -- 6.22 Strokes -- 6.23 Conclusion -- References -- Chapter 7: Human Diets, Gut Microbiome, and Neuroinflammation -- 7.1 Introduction. | |
7.2 Impact of Diet on the Gut Microbiota -- 7.3 Dietary Fat and Carbohydrates -- 7.4 Probiotics and Prebiotics -- 7.5 Micronutrients and Gut Microbiota -- 7.6 Gut Microbiota and Neuroinflammatory Diseases -- 7.7 Alzheimer´s Disease -- 7.8 Autism Spectrum Disorder -- 7.9 Multiple Sclerosis -- 7.10 Conclusion -- References -- Chapter 8: Dietary Fatty Acids, Gut Microbiome, and Gut-Brain Communication: A Current Perspective -- 8.1 Introduction -- 8.2 Role of Long- and Short-Chain Fatty Acids -- 8.3 Alterations in the Gut Ecosystem -- 8.4 Impact of Fatty Acids on Gut Microbiome -- 8.4.1 Effect on Immune System -- 8.4.2 Effect on Gut Ecosystem -- 8.4.3 Effect on Gut Inflammatory Diseases -- 8.4.4 Effect on Obesity -- 8.4.5 Impact on Type 2 Diabetes Mellitus -- 8.5 Dietary Fats-Gut Microbiota: Brain Communication -- 8.6 Conclusion -- References -- Chapter 9: Role of Short-Chain Fatty Acids from Gut Microbiota in Neuroendocrine Pathogenesis Management -- 9.1 Introduction -- 9.2 Occurrence -- 9.3 Chemistry of SCFAs -- 9.4 Role of SCFA and Its Mode of Action in prognosis of diseases -- 9.4.1 Anticancer Activity -- 9.4.2 Gut and Brain -- 9.4.3 Diabetes -- 9.4.4 Inflammatory Regulation -- 9.4.5 Gut Health -- 9.5 Conclusion -- References -- Chapter 10: Potential Role of Probiotics on Gut Microbiota in Neurological Disease -- 10.1 Introduction -- 10.2 Microbiome-Gut-Brain Axis: A Bi-directional Communication System -- 10.2.1 Role and Developmental Role and Mechanism of Action of Gut-Brain Axis -- 10.2.2 Effects of Human Microbiome and Probiotics on ENS, ANS, and CNS -- 10.2.2.1 Effect of Human Microbiome and Probiotics on ENS -- 10.2.2.2 Effects of Human Microbiome and Probiotics on ANS -- 10.2.2.3 Effects of Human Microbiome and Probiotics on Central Nervous System -- 10.3 Neurological Diseases Influenced by Imbalance of Gut-Brain Axis. | |
10.3.1 Amyotrophic Lateral Sclerosis -- 10.3.2 Epilepsy -- 10.3.3 Autistic Spectrum Disorder -- 10.3.4 Dementia -- 10.3.5 Multiple Sclerosis (MS) -- 10.3.6 Alzheimer´s Disease -- 10.3.7 Anxiety and Depression -- 10.3.8 Schizophrenia -- 10.4 Psychobiotics -- 10.5 Therapeutic Manipulation, Implications, and Future Prospects -- 10.6 Conclusion -- References -- Chapter 11: Reversal of Metabolic Disorder Through the Restoration of Gut Microbiota -- 11.1 Introduction -- 11.2 Role of Phytochemicals in the Gut Restoration -- 11.3 Restoration of Gut Microbiota in AD Via Phytomolecules -- 11.4 Restoration of Gut Microbiota in Diabetes Via Phytomolecules -- 11.5 Restoration of Gut Microbiota in Obesity Via Phytomolecules -- 11.6 Conclusions -- References -- Chapter 12: Gut Microbiome and Diet: Promising Approach for Treatment of Cognitive Impairment -- 12.1 Introduction -- 12.2 Potential of Modified Diet for Treatment of Cognitive Dysfunction -- 12.2.1 High-Fiber Diet -- 12.2.2 Potential of Probiotics for Cognitive Impairment Therapy -- 12.2.3 Potential of Genetically Modified Probiotics (GMP) for Cognitive Impairment Therapy -- 12.3 Fecal Microbiota Transplantation (FMT) as a Cognitive Impairment Therapy -- 12.4 Potential of Physical Training/Exercise for Cognitive Impairment Therapy -- 12.5 Conclusion -- References -- Chapter 13: Nanoplastics, Gut Microbiota, and Neurodegeneration -- 13.1 Introduction -- 13.2 Plastic, Microplastic, and Nanoplastic: Origin and Its Chemical Composition -- 13.2.1 Sources of Nanoplastics -- 13.2.2 Routes of Exposure -- 13.2.3 Additives -- 13.2.4 Impact of Nanoplastic on Gut Microbiota and Its Molecular Mechanism -- 13.2.5 Impact of Additives on Gut Microbiome -- 13.3 Molecular Mechanism -- 13.3.1 Initiation Events (IE) -- 13.3.2 Key Event: Oxidative Stress -- 13.3.3 Activation of Oxidative Stress Pathway. | |
13.3.4 Impact of MPs/NPs Induced Oxidative Stress on Gut Microbiota -- 13.3.5 Gut Microbiome and Neurodegenerative Disorder -- 13.3.6 Impact of Altered Gut Microbiota Due to Ingested MPs/NPs on Neurodegenerative Diseases -- 13.3.7 Role of Antioxidants -- 13.4 Conclusion -- References -- Chapter 14: Gut Microbiome, COVID-19, and Neurological Impairment -- 14.1 Introduction -- 14.2 Human Diet and COVID-19 -- 14.3 Gut-Lung Axis -- 14.4 Diet and Gut-microbiota in the Population of Developed and Developing Countries -- 14.5 Effect of Microbiota on COVID-19 Cases During Lockdown -- 14.6 Diet Induced Dysbiosis, Inflammation, and Commodity -- 14.7 Personalized Nutritional Invention for Treating COVID-19 -- 14.8 Molecular Mechanism of Microbiota-Virus Interaction -- 14.8.1 Piperine as a Repurposing Molecule for Reversing the COVID-19 Pandemic -- 14.8.2 Interplay Between Gut Microbiome, COVID-19, and Neurological Impairment -- 14.9 Conclusion and Future Perspectives -- References -- Chapter 15: Tools to Study Gut Microbiome -- 15.1 Introduction -- 15.1.1 Gut Microbes Are Highly Abundant -- 15.1.2 The Great Plate Count Anomaly -- 15.1.3 From Microscope to Genoscope -- 15.1.4 Microbiota Establishment in the Gut by Forming Biofilms -- 15.2 Gut Metagenomics Experimental Tool -- 15.2.1 Experimental/Study Design -- 15.2.2 Sample Types, Collection, Handling, and Processing -- 15.2.3 Next-Generation Sequencing -- 15.3 Gut Metagenomics Bioinformatics Tool -- 15.3.1 Preprocessing of Raw Reads -- 15.3.2 Amplicon Analysis -- 15.3.3 Shotgun Analysis -- 15.3.4 Assembly -- 15.3.5 Diversity Measures -- 15.3.6 Challenges -- References -- Chapter 16: Germ-free Mice Technology: Opportunity for Future Research -- 16.1 Introduction -- 16.2 Germ-Free Mice Technology -- 16.2.1 History -- 16.2.2 GF Technology -- 16.2.3 Customized Flora and Control Group for Experiments. | |
16.3 Why Mice Model?. | |
Titolo autorizzato: | Gut Microbiome in Neurological Health and Disorders |
ISBN: | 981-19-4530-6 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910586598403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |