Vai al contenuto principale della pagina

Catalytic asymmetric synthesis / / edited by Takahiko Akiyama and Iwao Ojima



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Catalytic asymmetric synthesis / / edited by Takahiko Akiyama and Iwao Ojima Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley, , [2022]
©2022
Edizione: Fourth edition.
Descrizione fisica: 1 online resource (909 pages)
Disciplina: 541.39
Soggetto topico: Asymmetric synthesis
Catalysis
Persona (resp. second.): AkiyamaTakahiko
OjimaIwao <1945->
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Preface to the First Edition -- List of Contributors -- Part I Asymmetric Organocatalysis -- Chapter 1 Asymmetric Enamine and Iminium Ion Catalysis -- 1.1. Introduction -- 1.2. Representative Organocatalysts -- 1.2.1. Introduction -- 1.2.2. Reactivity of Diphenylprolinol Silyl Ether Catalyst and MacMillan's Catalyst -- 1.2.3. Cinchona Amine-Based Catalysts -- 1.3. Enamine -- 1.3.1. Aldol Reaction -- 1.3.2. Mannich Reaction -- 1.3.3. Other Functionalization of the -Position of Carbonyl Groups -- 1.3.4. Michael Reaction -- 1.3.5. Dienamine and Trienamine as an Intermediate [33] -- 1.4. Iminium Ion -- 1.4.1. Introduction of an Iminium Ion -- 1.4.2. Two Reaction Paths -- 1.4.3. Diels-Alder Type Reaction -- 1.4.4. Michael Reaction -- 1.5. Domino Reaction -- 1.5.1. Introduction of Domino (Cascade and Tandem) Reactions -- 1.5.2. Enders' Work -- 1.6. Domino Reaction and Total Synthesis -- 1.6.1. Steroid Skeleton -- 1.6.2. -Skytanthine and Quinine -- 1.6.3. (+)-Lycoposerramine Z -- 1.6.4. Estradiol Methyl Ether -- 1.6.5. MacMillan's Alkaloid Synthesis -- 1.6.6. Prostaglandin E1 Methyl Ester -- 1.6.7. Corey Lactone -- 1.7. Combination of Two Catalysts -- 1.7.1. Combination of Two Organocatalysts -- 1.7.2. Combination of Organocatalyst and Metal Catalyst -- 1.7.3. Two Chiral Catalysts -- 1.8. Conclusion -- References -- Chapter 2 Asymmetric Acid Organocatalysis -- 2.1. Introduction -- 2.2. Features of Chiral Brønsted Acids -- 2.2.1. Acidity of Chiral Brønsted Acids -- 2.2.2. Mode of Activation of Chiral Phosphoric Acids and Related Compounds -- 2.2.3. Effect of Metal Salts -- 2.3. Nucleophilic Reactions -- 2.3.1. Reactions with Imines and Iminium Salts -- 2.3.2. Reactions with Carbonyl Compounds and Oxonium Salts -- 2.4. Cycloaddition Reactions -- 2.4.1. Diels-Alder Reactions.
2.4.2. Aza-Diels-Alder Reactions -- 2.4.3. Oxa-Diels-Alder Reactions -- 2.4.4. Other Cycloaddition Reactions -- 2.4.5. Nazarov Cyclizations -- 2.5. Michael Reactions -- 2.6. Reduction -- 2.6.1. Reduction of Imines -- 2.6.2. Reduction of Ketones -- 2.6.3. Reduction of Alkenes -- 2.7. Addition to Alkenes -- 2.8. Substitution Reactions -- 2.9. Rearrangement Reactions -- 2.10. Miscellaneous Reactions -- 2.11. Construction of Axially, Planar, and Helically Chiral Compounds -- 2.12. Combination with Transition Metal Catalysts [25-27] -- 2.13. Combination with Photoredox Catalyst -- 2.14. Conclusion -- Acknowledgments -- References -- Chapter 3 Asymmetric Base Organocatalysis -- 3.1. Introduction -- 3.2. Chiral Tertiary Amine Catalysts: Chiral Acid-Base Bifunctional Catalysis -- 3.2.1. Application of Designed Pronucleophiles -- 3.2.2. Carbon-Heteroatom Bond Formations -- 3.2.3. Other Applications -- 3.3. Chiral Guanidine Catalysts -- 3.4. Other Chiral Uncharged Organobase Catalysts: Chiral Organosuperbases -- 3.4.1. Chiral Cyclopropenimine Catalysts -- 3.4.2. Chiral Triaryliminophosphorane Catalysts -- 3.4.3. Chiral P1-Phosphazene Catalysts -- 3.4.4. Chiral Higher-Order Phosphazene Catalysts -- 3.5. Conclusion and Outlook -- References -- Chapter 4 Asymmetric Phase-Transfer and Ion-Pair Organocatalyses -- 4.1. Introduction -- 4.2. Chiral Cation -- 4.2.1. Chiral Cation Phase-Transfer Catalysis -- 4.2.2. Transition-Metal/Chiral Cation Dual Catalysis -- 4.2.3. Cation-Binding Catalysis -- 4.3. Chiral-Anion -- 4.3.1. Iminium -- 4.3.2. Oxocarbenium -- 4.3.3. Carbocation -- 4.3.4. Miscellaneous -- 4.3.5. Chiral-Anion Phase Transfer -- 4.3.6. Transition-Metal/Chiral-Anion Dual Catalysis -- 4.3.7. Anion-Binding Catalysis -- 4.4. Conclusion -- References -- Chapter 5 Asymmetric Peptide Catalysis -- 5.1 Introduction.
5.2 Catalysis by N-Terminal Amino Group of Peptides -- 5.2.1 Enamine Catalysis -- 5.2.2 Iminium Ion Catalysis -- 5.2.3 Other Type of Peptide Catalysts That Utilize Terminal Amino Groups -- 5.3 Catalysis by Side Chain Functional Group on Peptides -- 5.3.1 Histidine-Based Peptide Catalysis -- 5.3.2 Aspartate/Glutamate-Based Peptide Catalysis -- 5.3.3 Arg/Lys-Based Peptide Catalysis -- 5.3.4 Cysteine-Based Peptide Catalysis -- 5.4 Catalysis by Functional Groups Covalently Bound to Peptides -- 5.4.1 Peptide Catalysts That Have Catalytic Center Connected to N-Terminal -- 5.4.2. Peptide Catalysts That Have Catalytic Center on Side Chain of Amino Acid -- 5.5 Peptide Catalysis with Other Types of Catalytic Centers -- 5.6 Conclusion -- References -- Chapter 6 Asymmetric Carbene Catalysis: A Brief Highlight of Developments in the Past Decade -- 6.1. Early Development of Asymmetric NHC Catalysis -- 6.1.1. Early Discoveries on NHC-Mediated Reactions: Benzoin and Related Reactions via Acyl Anion Intermediates -- 6.1.2. Moving from Simple Aldehydes to Enals and -Functionalized Aldehydes: A Key Progress During the First Decade of This Century -- 6.1.3. Remaining Challenges When the Last Decade Started -- 6.2. Activation of Substrates beyond Aldehydes -- 6.2.1. Activations of Stable Carboxylic Esters -- 6.2.2. Activation of Ketenes -- 6.2.3. Activation of Imines -- 6.2.4. Activation of Other Substrates -- 6.3. Single-Electron Transfer Activation and Radical Reactions -- 6.3.1. Oxidation of Aldehydes to Esters -- 6.3.2. Reductive Coupling Reactions Involving Nitroalkenes and Nitrobenzyl Bromides -- 6.3.3. Activation of Enal on -Carbon via SET for Asymmetric Reactions -- 6.3.4. Radical-Radical Coupling via NHC-Catalyzed Activation of Aldehydes -- 6.3.5. Visible-Light-Driven Radical Reactions -- 6.4. NHC as Non-Covalent (Brønsted Base) Catalysts.
6.5. Cooperative Catalysis of NHCs with Other Catalysts -- 6.5.1. Dual Catalysis of NHC Organocatalysts and Transition Metal Catalysts -- 6.5.2. Dual Catalysis of NHC Organocatalysts and Lewis Acid Co-catalysts/Additives -- 6.5.3. Dual Catalysis of NHC Organocatalysts and Brønsted Acids -- 6.5.4. Dual Catalysis of NHC Organocatalysts and Other Catalysts -- 6.6. Synthetic Applications of NHC Catalysis -- 6.6.1. Kinetic Resolution and Desymmetrization -- 6.6.2. NHC Catalysis in Natural Product Synthesis -- 6.7. Summary and Outlook -- References -- Chapter 7 Asymmetric Hypervalent Iodine Catalysis -- 7.1 Introduction -- 7.2 Oxidative Dearomative Coupling of Arenols -- 7.3 Oxidative -Functionalization of Carbonyl Compounds -- 7.4 Oxidative Difunctionalizaiton of Alkenes -- 7.5 Conclusion and Outlook -- References -- Part II Asymmetric Photochemical Reactions and Photoredox Catalysis -- Chapter 8 Asymmetric Visible-Light Photoredox Catalysis -- 8.1. Introduction -- 8.2. Dual Catalysis Approach -- 8.2.1. Lewis Base Catalysis -- 8.2.2. Hydrogen-Bonding Catalysis -- 8.2.3. Brønsted Base Catalysis -- 8.2.4. Brønsted Acid Catalysis -- 8.2.5. Lewis Acid Catalysis -- 8.2.6. Phase-Transfer Catalysis -- 8.3. Single Bifunctional Catalyst Approach -- 8.3.1. Chiral Organophotocatalysts -- 8.3.2. Chiral Organometallic Photocatalysts -- 8.4. Conclusion -- References -- Chapter 9 Asymmetric Photoredox Reactions without Photocatalysts -- 9.1. General Introduction -- 9.2 Photoexcitation of Organocatalytic Intermediates -- 9.2.1 Enamine Catalysis in EDA Complex Photoactivation -- 9.2.2 Phase Transfer Catalysis in EDA Complex Photoactivation -- 9.2.3 Iminium Ion Catalysis in EDA Complex Photoactivation -- 9.2.4 Direct Photoexcitation of Enamines -- 9.2.5 Direct Photoexcitation of Iminium Ions -- 9.3 Photoexcitation of Metal-Based Intermediates.
9.3.1 Use of Chiral Lewis Acids to Form Photoactive Intermediates -- 9.3.2 Photoexcitation of Organometallic Intermediates -- 9.4 Photochemistry and Biocatalysis -- 9.4.1 EDA Complex Photochemistry and Enzymatic Catalysis -- 9.4.2 Direct Photoexcitation Strategies in Enzymatic Catalysis -- 9.5 Methods Based on the Direct Excitation of Substrates -- 9.6 Conclusions -- Acknowledgments -- References -- Chapter 10 Enantioselective Photochemical [2+2] Cycloaddition Reactions -- 10.1. Introduction -- 10.2. Chiral Organocatalysts -- 10.2.1. Xanthone and Thioxanthone -- 10.2.2. Thioureas -- 10.2.3. Brønsted Acids -- 10.2.4. Iminium Ions -- 10.3. Chiral Metal Catalysts -- 10.3.1. Transition Metals and Lanthanides -- 10.3.2. AlBr3-Activated Oxazaborolidines -- 10.4. Dual Catalysis -- 10.4.1. Electron Transfer -- 10.4.2. Energy Transfer -- 10.5. Chiral METAL-ORGANIC Cages -- 10.6. Concluding Remarks -- Acknowledgments -- References -- Part III Asymmetric Synthesis Through C-H Bond Activation -- Chapter 11 Asymmetric C-H Functionalization of C(sp2)-H Bond -- 11.1. Introduction -- 11.2. Palladium Catalysis -- 11.2.1. Phosphorus-Based Ligands -- 11.2.2. Monoprotected Amino Acids as Chiral Ligands -- 11.2.3. Other Ligands -- 11.2.4. Chiral Transient Auxiliary -- 11.2.5. Chiral Auxiliaries -- 11.2.6. Cooperative Catalysis -- 11.2.7. Electrochemical CH Activations -- 11.3. Rhodium Catalysis -- 11.3.1. Chiral Cpx-Based Catalysts -- 11.3.2. In-Situ Generated Chiral Complexes -- 11.3.3. Other Strategies -- 11.4. Iridium Catalysis -- 11.4.1. C-C Bond Formations -- 11.4.2. CH Borylations -- 11.4.3. CH Silylations -- 11.5. Ruthenium Catalysis -- 11.5.1. Chiral Amine as the TDG -- 11.5.2. Chiral Acid -- 11.6. Scandium Catalysis -- 11.7. Nickel Catalysis -- 11.7.1. Formyl C-H Activation -- 11.7.2. Intramolecular Reactions -- 11.7.3. Intermolecular Reactions.
11.8. Cobalt Catalysis.
Titolo autorizzato: Catalytic asymmetric synthesis  Visualizza cluster
ISBN: 1-119-73642-0
1-119-73640-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910580254103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui