Vai al contenuto principale della pagina
Autore: | Choi Byungcho |
Titolo: | Pulsewidth modulated DC-to-DC power conversion : circuits, dynamics, control, and DC power distribution systems / / Byungcho Choi |
Pubblicazione: | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
©2022 | |
Edizione: | Second edition. |
Descrizione fisica: | 1 online resource (723 pages) |
Disciplina: | 621.3132 |
Soggetto topico: | DC-to-DC converters |
Pulse-duration modulation | |
PWM power converters | |
Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Chapter 1 PWM Dc‐to‐Dc Power Conversion -- 1.1 PWM Dc‐to‐Dc Power Conversion -- 1.1.1 Dc‐to‐Dc Power Conversion -- 1.1.2 PWM Technique -- 1.2 Standalone Dc‐to‐Dc Power Conversion System -- 1.2.1 Dc Source with Non‐ideal Characteristics -- 1.2.2 Dc‐to‐Dc Converter as Voltage Source -- 1.2.3 Load as Dynamic Current Sink -- 1.3 Features and Issues of PWM Dc‐to‐Dc Converter -- 1.3.1 Dc‐to‐Dc Power Converter Circuits -- 1.3.2 Dynamic Modeling and Analysis -- 1.3.3 Dynamic Performance and Control Design -- 1.4 Dc Power Distribution Systems -- 1.4.1 Structure of Dc Power Distribution Systems -- 1.4.2 Issues in Dc Power Distribution System Analysis and Design -- 1.5 Chapter Highlights -- 1.5.1 Part I: Dc‐to‐Dc Converter Circuits -- 1.5.2 Part II: Modeling and Dynamics of PWM Converters -- 1.5.3 Part III: Control Schemes and Converter Performance -- 1.5.4 Part IV: Dc Power Distribution Systems -- Part I Dc‐to‐Dc Power Converter Circuits -- Chapter 2 Buck Converter -- 2.1 Ideal Step‐Down Dc‐to‐Dc Power Conversion -- 2.2 Buck Converter: Step‐Down Dc‐to‐Dc Converter -- 2.2.1 Evolution to Buck Converter -- 2.2.2 Frequency‐Domain Analysis -- 2.3 Buck Converter in Start‐up Transient -- 2.3.1 Piecewise Linear Analysis -- 2.3.2 Start‐up Response -- 2.4 Buck Converter in Steady State -- 2.4.1 Circuit Analysis Techniques -- 2.4.1.1 Piecewise Linear Analysis -- 2.4.1.2 Small‐Ripple Approximation -- 2.4.1.3 Flux Linkage Balance Condition and Charge Balance Condition -- 2.4.2 Steady‐State Analysis -- 2.4.3 Evaluation of Output Voltage Ripple -- 2.4.3.1 Evaluation with Ideal Capacitor -- 2.4.3.2 Effects of Parasitic Resistance of Capacitor -- 2.5 Buck Converter in Discontinuous Conduction Mode -- 2.5.1 Origin of Discontinuous Conduction Mode Operation -- 2.5.2 Conditions for DCM Operation. |
2.5.3 Steady‐State Operation in DCM -- 2.6 Closed‐Loop Control of Buck Converter -- 2.6.1 Closed‐Loop Feedback Controller -- 2.6.1.1 Pulsewidth Modulation -- 2.6.1.2 Voltage Feedback Circuit -- 2.6.2 Transient Responses of Closed‐Loop Controlled Buck Converter -- 2.6.2.1 Step Input Response -- 2.6.2.2 Step Load Response -- 2.6.2.3 Operational Mode Change Response -- 2.7 Chapter Summary -- Problems -- Chapter 3 Dc‐to‐Dc Power Converter Circuits -- 3.1 Boost Converter -- 3.1.1 Evolution to Boost Converter -- 3.1.2 Steady‐State Analysis in CCM -- 3.1.2.1 Steady‐State Operation in CCM -- 3.1.2.2 Estimation of Output Voltage Ripple -- 3.1.3 Steady‐State Analysis in DCM -- 3.1.4 Effects of Parasitic Resistance on Voltage Gain -- 3.2 Buck/Boost Converter -- 3.2.1 Evolution to Buck/Boost Converter -- 3.2.2 Steady‐State Analysis in CCM -- 3.2.2.1 Steady‐State Operation in CCM -- 3.2.2.2 Estimation of Output Voltage Ripple -- 3.2.3 Steady‐State Analysis in DCM -- 3.3 Three Basic Converters -- 3.3.1 Structure and Operation of Three Basic Converters -- 3.3.2 Voltage Gain of Three Basic Converters -- 3.4 Flyback Converter: Transformer‐Isolated Buck/Boost Converter -- 3.4.1 Evolution to Flyback Converter -- 3.4.2 Steady‐State Analysis in CCM -- 3.4.3 Steady‐State Analysis in DCM -- 3.5 Bridge‐Type Buck‐Derived Isolated Dc‐to‐Dc Converters -- 3.5.1 Switch Network and Multi‐Winding Transformer -- 3.5.1.1 Switch Network Structure -- 3.5.1.2 Circuit Models for Multi‐winding Transformers -- 3.5.2 Full‐Bridge Converter -- 3.5.2.1 Operation with Ideal Transformer -- 3.5.2.2 Effects of Magnetizing Inductance -- 3.5.3 Half‐Bridge Converter -- 3.5.4 Push-Pull Converter -- 3.6 Forward Converters -- 3.6.1 Basic Operational Principles -- 3.6.1.1 Reset Problem and Reset Circuit -- 3.6.1.2 Switch Network with Zener Diode Reset. | |
3.6.1.3 Switch Network with Tertiary Winding Reset -- 3.6.2 Tertiary‐Winding Reset Forward Converter -- 3.6.3 Two‐Switch Forward Converter -- 3.7 Chapter Summary -- Reference -- Problems -- Part II Modeling and Dynamics of PWM Converters -- Chapter 4 Modeling PWM Dc‐to‐Dc Converters -- 4.1 Overview of PWM Converter Modeling -- 4.1.1 Power Stage Modeling -- 4.1.2 PWM Block Modeling -- 4.1.3 Voltage Feedback Circuit and Small‐Signal Model of PWM Converter -- 4.2 Averaging Power Stage Dynamics -- 4.2.1 State‐Space Averaging Method -- 4.2.1.1 Switched State‐Space Model and Switching Function -- 4.2.1.2 Continuous Duty Ratio and Averaged State‐Space Model -- 4.2.2 Circuit Averaging Technique -- 4.2.2.1 Averaging Switch Drive Signal -- 4.2.2.2 Procedure of Circuit Averaging -- 4.2.2.3 PWM Switch -- 4.2.2.4 Averaging PWM Switch -- 4.2.2.5 Average Models for Three Basic PWM Converters -- 4.2.3 Circuit Averaging and State‐Space Averaging -- 4.3 Linearizing Averaged Power Stage Dynamics -- 4.3.1 Linearization of Nonlinear Function and Small‐Signal Model -- 4.3.1.1 Single‐Variable Nonlinear Functions -- 4.3.1.2 Multiple‐Variable Nonlinear Functions -- 4.3.2 Small‐Signal Model of PWM Switch - The PWM Switch Model -- 4.3.3 Small‐Signal Model of Converter Power Stage -- 4.4 Frequency Response of Converter Power Stage -- 4.4.1 Sinusoidal Response of Power Stage -- 4.4.2 Frequency Response and s‐domain Small‐Signal Model -- 4.5 Generalization of Power Stage Modeling -- 4.5.1 Power Stage Modeling with Parasitic Resistances -- 4.5.1.1 Buck Converter with Ideal Voltage Source -- 4.5.1.2 Buck Converter with Input Filter -- 4.5.1.3 Linearization of Averaged PWM Switch Equation -- 4.5.1.4 Predictions of Refined Small‐Signal Model -- 4.5.2 Modeling PWM Converters in DCM Operation -- 4.5.2.1 Averaged Equations for PWM Switch in DCM. | |
4.5.2.2 Linearization of Averaged Equation and Small‐Signal Circuit Model -- 4.5.3 Modeling Isolated PWM Converters -- 4.5.3.1 Modeling Forward Converter and Bridge‐Type Converters -- 4.5.3.2 Modeling Flyback Converter -- 4.6 Small‐Signal Gain of PWM Block -- 4.7 Universal Small‐Signal Model for PWM Dc‐to‐Dc Converters -- 4.7.1 Voltage Feedback Circuit -- 4.7.1.1 Output Voltage Control -- 4.7.1.2 Voltage Feedback Compensation -- 4.7.2 Universal Small‐Signal Model for PWM Converters -- 4.8 Chapter Summary -- References -- Problems -- Chapter 5 Power Stage Transfer Functions -- 5.1 Bode Plot for Transfer Functions -- 5.1.1 Basic Definitions -- 5.1.1.1 Transfer Function -- 5.1.1.2 Frequency Response -- 5.1.1.3 Polar Plot and Bode Plot Representations -- 5.1.2 Bode Plots for Multiplication Factors -- 5.1.2.1 Constant -- 5.1.2.2 Single and Double Integration Functions -- 5.1.2.3 Single and Double Differentiation Functions -- 5.1.2.4 Single Pole and Single Zero Functions -- 5.1.2.5 Double Pole and Double Zero Functions -- 5.1.2.6 RHP Pole and RHP Zero Functions -- 5.1.3 Bode Plot Construction for Transfer Functions -- 5.1.3.1 Examples of Bode Plot Construction -- 5.1.3.2 Non‐minimum Phase System -- 5.1.4 Identification of Transfer Function from Bode Plot -- 5.2 Power Stage Transfer Functions of Three Basic Converters in CCM Operation -- 5.2.1 Power Stage Transfer Functions of Buck Converter -- 5.2.1.1 Input‐to‐Output Transfer Function -- 5.2.1.2 Duty Ratio‐to‐Output Transfer Function -- 5.2.1.3 Load Current‐to‐Output Transfer Function -- 5.2.2 Power Stage Transfer Functions of Boost Converter -- 5.2.2.1 Input‐to‐Output Transfer Function -- 5.2.2.2 Duty Ratio‐to‐Output Transfer Function and RHP Zero -- 5.2.2.3 Load Current‐to‐Output Transfer Function -- 5.2.2.4 Functional Origin of RHP Zero -- 5.2.3 Power Stage Transfer Functions of Buck/Boost Converter. | |
5.3 Power Stage Transfer Functions in DCM Operation -- 5.3.1 Evaluation of DCM Transfer Functions -- 5.3.2 Analysis of DCM Duty Ratio‐to‐Output Transfer Function -- 5.4 Power Stage Transfer Functions of Isolated Converters -- 5.4.1 Tertiary‐Winding Reset Forward Converter -- 5.4.2 Flyback Converter -- 5.5 Empirical Methods for Small‐Signal Analysis -- 5.6 Chapter Summary -- Reference -- Problems -- Chapter 6 Dynamic Performance of PWM Dc‐to‐Dc Converters -- 6.1 Stability -- 6.2 Frequency‐Domain Performance Criteria -- 6.2.1 Loop Gain -- 6.2.2 Audio‐susceptibility -- 6.2.3 Output Impedance -- 6.3 Time‐Domain Performance Metrics -- 6.3.1 Step Load Response -- 6.3.2 Step Input Response -- 6.4 Stability of Dc‐to‐Dc Converters -- 6.4.1 Stability of Linear Time‐Invariant Systems -- 6.4.1.1 Definition of BIBO Stability -- 6.4.1.2 Unit Impulse Function and Impulse Response -- 6.4.1.3 Impulse Response and BIBO Stability -- 6.4.1.4 Pole Locations and BIBO Stability -- 6.4.2 Small‐Signal Stability of Dc‐to‐Dc Converters -- 6.5 Nyquist Criterion -- 6.5.1 Theoretical Foundation of Nyquist Criterion -- 6.5.1.1 Contour Mapping from s‐plane to F(s)‐plane -- 6.5.1.2 Cauchy's Theorem -- 6.5.2 Proof of Cauchy's Theorem -- 6.5.2.1 Proof of Fact I and Fact II -- 6.5.2.2 Cauchy's Theorem to Evaluate RHP Roots in 1+T(s)& -- equals -- 0 -- 6.5.3 Nyquist Stability Criterion -- 6.5.4 Application of Nyquist Stability Criterion to Dc‐to‐Dc Converters -- 6.6 Relative Stability: Gain Margin and Phase Margin -- 6.7 Chapter Summary -- Problems -- Part III Control Schemes and Converter Performance -- Chapter 7 Feedback Compensation and Closed‐Loop Performance - Voltage Mode Control -- 7.1 Asymptotic Analysis Method -- 7.1.1 Concept of Asymptotic Analysis Method -- 7.1.2 Examples of Asymptotic Analysis Method -- 7.1.2.1 Procedures for Asymptotic Analysis. | |
7.2 Analysis of Frequency‐Domain Performance in CCM. | |
Titolo autorizzato: | Pulsewidth modulated DC-to-DC power conversion |
ISBN: | 1-119-45447-6 |
1-119-45448-4 | |
1-119-45444-1 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910555250703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |