Vai al contenuto principale della pagina
Titolo: | Exercise, autophagy and chronic diseases / / Ning Chen, editor |
Pubblicazione: | Singapore : , : Springer, , [2021] |
©2021 | |
Descrizione fisica: | 1 online resource (267 pages) |
Disciplina: | 617.1027 |
Soggetto topico: | Sports medicine |
Autofàgia | |
Malalties cròniques | |
Exercici | |
Soggetto genere / forma: | Llibres electrònics |
Persona (resp. second.): | ChenNing |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Intro -- Preface -- Acknowledgments -- Contents -- Chapter 1: Molecular Processes and Regulation of Autophagy -- 1 Introduction -- 2 Molecular Mechanism of Autophagy: A Historical Interest -- 3 The Molecular Mechanisms of Autophagy in Mammals -- 3.1 Autophagy Induction -- 3.2 Autophagosome Formation -- 3.3 Fusion Between Autophagosome and Lysosome -- 4 Molecular Regulation of Autophagy Machinery -- 4.1 The mTOR-Dependent Signaling Pathway -- 4.2 mTOR-Independent Signaling Pathways -- 4.2.1 Calcium Signaling in Autophagy -- 4.2.2 Calcium-Releasing Channel Control in Autophagy Mediated by TRPML -- 4.2.3 The mTOR-Independent TRPML1 Channel -- 4.2.4 The Regulation of Autophagy Via miRNA, ROS, and JNK-Beclin1 -- 5 Conclusion -- References -- Chapter 2: Acute and Chronic Exercise on Autophagy -- 1 Introduction -- 2 Exercise and Autophagy -- 2.1 Effect of Exercise on Skeletal Muscle Autophagy -- 2.2 Effect of Exercise on Myocardial Autophagy -- 2.3 Effect of Exercise on the Regulation of Autophagy Level in Hepatocytes -- 2.4 Effect of Exercise on Brain Function -- 3 Acute Exercise-Induced Autophagy -- 3.1 Underlying Mechanism for the Effect of Acute Exercise on Skeletal Muscle Autophagy -- 3.2 Underlying Mechanism for the Effect of Acute Exercise on Myocardial Autophagy -- 4 Chronic Exercise Induces Autophagy -- 4.1 Underlying Mechanism for the Effect of Chronic Exercise on Skeletal Muscle Autophagy -- 4.2 Underlying Mechanism for the Effect of Chronic Exercise on Myocardial Autophagy -- 5 Conclusion and Prospects -- References -- Chapter 3: The Beneficial Roles of Exercise-Mediated Autophagy in T2DM -- 1 The Background of T2DM -- 2 Autophagy in Insulin Target Tissues of T2DM -- 2.1 Hepatic Autophagy in T2DM -- 2.2 Adipose Autophagy in T2DM -- 2.3 Skeletal Muscle Autophagy in T2DM -- 2.4 Pancreatic β-Cell Autophagy in T2DM. |
3 Exercise-Mediated Autophagy in T2DM -- 3.1 Exercise-Mediated Autophagy Improves Insulin Sensitivity in T2DM -- 3.2 Exercise-Mediated Autophagy Maintains Mitochondrial Quality Control in T2DM -- 3.3 Exercise-Mediated Autophagy Maintains Muscle Mass and Function in T2DM -- 4 Conclusion -- References -- Chapter 4: Exercise-Induced Autophagy and Obesity -- 1 Introduction -- 2 General Characteristics and Mechanism of Autophagy -- 3 Relationship Between Autophagy and Obesity -- 3.1 Lipophagy and Obesity -- 3.2 Mitophagy and Obesity -- 3.3 Reticulophagy and Obesity -- 4 The Effect of Exercise-Induced Autophagy on Obesity -- 4.1 Endurance Exercise -- 4.2 Resistance Exercise or Combined Endurance Exercise -- 5 Exercise Interventions for Obese Patients Targeting Autophagy -- 6 Conclusion -- References -- Chapter 5: Exercise-Mediated Autophagy and Nonalcoholic Fatty Liver Disease -- 1 Introduction -- 1.1 Epidemiology and Diagnosis of Nonalcoholic Fatty Liver Disease (NAFLD) -- 1.2 Pathological Process of NAFLD -- 1.3 Autophagy in NAFLD -- 1.3.1 Autophagy Regulates Lipid Storage in Hepatocytes -- 1.3.2 Autophagy Regulates the Differentiation and Production of Adipocytes -- 2 Effect of Exercise Intervention in NAFLD and Underlying Mechanisms -- 2.1 Exercise Increases Lipid Metabolism Via Regulation of Autophagy -- 2.2 Exercise Alleviates NAFLD by Reducing Mitochondrial Oxidative Stress -- 2.3 Exercise Regulates microRNA-Mediated Autophagy in NAFLD -- 2.4 Exercise Promotes Autophagy in NAFLD by Increasing H2S Activity -- 2.5 Exercise-Mediated Autophagy Regulates Liver Fibrosis and Late-Stage NAFLD -- 3 Weight Loss Is a Feasible Strategy for NAFLD? -- 4 Exercise Prescriptions -- 5 Conclusion and Future Perspectives -- References -- Chapter 6: Exercise-Mediated Autophagy and Brain Aging -- 1 Autophagy in the Aging Process. | |
1.1 Autophagy Protects Against Metabolic Stress -- 1.2 Autophagy Acts as a Cell Housekeeper -- 1.3 Autophagy as a Genome Guardian -- 2 Autophagy Regulators During Aging Process -- 2.1 mTOR -- 2.2 Sirtuin (SIRT1) -- 2.3 p53 -- 3 Brain Aging -- 3.1 Characteristics of Brain Aging -- 3.1.1 Cell Senescence -- 3.1.2 Accumulation of Damaged Cellular Contents -- 3.1.3 Structural Changes in Brain During Aging Process -- 3.2 Underlying Mechanisms of Brain Aging -- 3.3 Brain Aging and Neurodegenerative Diseases -- 4 Exercise-Induced Autophagy and Brain Aging -- 4.1 Exercise and Brain Aging in Basic Research -- 4.1.1 Autophagy -- 4.1.2 Mitochondria -- 4.1.3 Inflammation -- 4.1.4 DNA Repairing -- 4.1.5 Lifespan Extension -- 4.2 Exercise and Brain Aging in Clinical Research -- 4.2.1 Brain Volume -- 4.2.2 Cognitive Capacity -- 5 Outlook and Prospects -- References -- Chapter 7: Exercise-Mediated Autophagy and Alzheimer´s Disease -- 1 The Epidemiology of AD -- 2 The Pathogenesis of AD -- 2.1 Amyloid Cascade Hypothesis -- 2.2 Tau Protein Hyperphosphorylation -- 2.3 Neuroinflammation -- 2.4 Mitophagy Dysfunction -- 2.5 Cholinergic Neurotransmitter Pathway Abnormalities -- 3 Autophagy and AD -- 3.1 Autophagy -- 3.2 The Regulatory Role of Autophagy in AD -- 3.2.1 Autophagy and Aβ -- 3.2.2 Autophagy and Tau Protein -- 3.2.3 Autophagy and Neuroinflammation -- 4 Exercise-Induced Autophagy in AD -- 4.1 Exercise Can Improve the Level of Autophagy -- 4.1.1 Exercise Can Increase the Autophagy Level of Normal Brain Cells -- 4.1.2 Exercise Can Improve the Functional Status of Autophagy in Brain with Nerve Damage -- 4.2 Exercise Can Improve AD Through Inducing Autophagy -- 4.2.1 Exercise Can Improve AD by Increasing the Activation of Autophagy -- 4.2.2 Exercise Can Improve AD by Enhancing the Degradation Function of Lysosomes. | |
4.2.3 Exercise Can Reduce the Deposition of AD-Like Aβ Through Autophagy -- 4.2.4 Exercise Can Reduce the Abnormal Phosphorylation of Tau by Improving Autophagy -- 4.2.5 Exercise Can Regulate Synaptic Plasticity Through Autophagy -- References -- Chapter 8: Exercise-Induced Autophagy and Parkinson´s Disease -- 1 Overview of Parkinson´s Disease (PD) -- 1.1 The Epidemiology of PD -- 1.2 The Pathogenesis of PD -- 1.3 Pathological Mechanisms of PD -- 1.3.1 Neuropathological Pathogenesis -- 1.3.2 Genetic Factors -- 1.3.3 Environmental Factors -- 1.3.4 Other Factors -- Immune Factors -- Oxidative Stress Factors -- 1.4 Current Status of Treatments -- 2 Autophagy Is Involved in PD -- 2.1 Mitophagy and PD -- 2.1.1 Parkinson´s Gene-Encoded Protein Is Involved in Mitochondrial Autophagy -- PTEN-Induced Kinase 1 (PINK1) and PARKIN Proteins Regulate Mitochondrial Autophagy -- DJ-1 Protein Regulates Mitochondrial Autophagy -- SNCA (Gene Encoding α-Synuclein) and α-Synuclein Regulate Mitochondrial Autophagy -- Leucine-Rich Repeat Kinase 2 (LRRK2) Regulates Mitochondrial Autophagy -- Glucocerebrosidase (GBA) Regulates Mitochondrial Autophagy -- ATPase Cation-Transporting 13A2 (ATP13A2) Regulates Mitochondrial Autophagy -- 2.1.2 Environmental Factors Regulate Mitochondrial Autophagy -- 2.2 The Relationship Between ALP and PD -- 2.3 The Role of microRNAs in PD -- 3 The Relationship Between Exercise and PD -- 3.1 Regulation of Exercise on Autophagy -- 3.2 The Regulatory Role of Exercise-Mediated Autophagy in PD -- References -- Chapter 9: Exercise-Mediated Autophagy in Cardiovascular Diseases -- 1 Introduction -- 2 Autophagy in Cardiovascular Diseases -- 3 Exercise-Mediated Autophagy in CVDs -- 3.1 Exercise-Mediated Autophagy in Hypertension -- 3.2 Exercise-Mediated Autophagy in Atherosclerosis -- 3.2.1 Autophagy and Atherosclerosis. | |
3.2.2 Exercise and Atherosclerosis -- 3.2.3 Effect of Exercise on Autophagy in Aorta -- 3.2.4 Exercise-Induced Autophagy Inhibits Atherosclerosis by Regulating Inflammatory Response and Lipid Metabolism -- 3.3 Exercise-Mediated Autophagy Alleviates Myocardial Ischemia-Reperfusion Injury -- 3.3.1 The Regulation of Autophagy During Ischemia -- 3.3.2 The Regulation of Autophagy During Reperfusion -- 3.3.3 Exercise Regulates Autophagy-Mediated Myocardial Ischemia-Reperfusion Injury -- 3.4 Exercise-Induced Autophagy in Cardioprotection -- 4 Conclusion -- References -- Chapter 10: Exercise-Induced Autophagy in the Prevention and Treatment of Sarcopenia -- 1 The Pathogenesis of Sarcopenia -- 2 The Regulation of Autophagy in Sarcopenia -- 2.1 ALS and UPS -- 2.2 Mitochondrial Quality Control -- 2.3 Satellite Cells -- 2.4 Inflammation -- 3 Exercise-Induced Autophagy Regulates Sarcopenia -- 3.1 Exercise and Sarcopenia -- 3.2 Exercise and Autophagy -- 3.3 Molecular Regulators of Exercise-Induced Autophagy -- 3.3.1 AMPK -- 3.3.2 PGC-1α -- 3.3.3 mTOR -- 3.3.4 FoxO -- 4 Exercise Advices -- 5 Conclusion -- References -- Chapter 11: Prospective Advances in Exercise-Induced Autophagy on Health -- 1 Introduction -- 2 Autophagy Pathways -- 3 Autophagy Is Activated During Exercise -- 4 Molecular Mechanisms of Exercise-Induced Autophagy -- 4.1 AMPK-mTOR-ULK1 Signal Pathway -- 4.2 Akt-mTOR Signal Pathway -- 4.3 Beclin1-Bcl-2 Complex -- 4.4 FoxO Family -- 4.5 Other Signal Pathways -- 5 Mitophagy -- 6 Exercise Adaptation for Health Promotion Through Induced Autophagy/Mitophagy -- 6.1 Exercise Performance -- 6.2 Skeletal Muscle Mass -- 6.3 Cardiovascular Adaptation -- 6.4 Glycolipid Metabolism Regulation -- 6.5 Mitochondrial Adaptation -- 6.6 Disease Status -- 7 Conclusion and Future Perspective -- References. | |
Chapter 12: Exercise Mimetic Pills for Chronic Diseases Based on Autophagy. | |
Titolo autorizzato: | Exercise, autophagy and chronic diseases |
ISBN: | 981-16-4525-6 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910502652503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |