Vai al contenuto principale della pagina

Soil microbiomes for sustainable agriculture : functional annotation / / Ajar Nath Yadav, editor



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Soil microbiomes for sustainable agriculture : functional annotation / / Ajar Nath Yadav, editor Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (645 pages)
Disciplina: 579.1757
Soggetto topico: Sustainable agriculture
Soil microbiology
Microbiota
Sòls
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): YadavAjar Nath
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Intro -- Foreword by Davinder Singh -- Foreword by Amrik Singh Ahluwalia -- Preface -- Contents -- Editor and Contributors -- 1 Plant Growth-Promoting Soil Microbiomes: Beneficial Attributes and Potential Applications -- 1.1 Introduction -- 1.2 Plant and Soil Microbiomes -- 1.2.1 Diversity and Composition -- 1.2.2 Factors Affecting the Soil Microbiomes -- 1.3 Scientific Techniques for Plant-Soil Microbiome Profiling -- 1.4 Beneficial Attributes of Soil Microbiomes -- 1.5 Biotechnological Applications in Agriculture -- 1.6 Presence of Soil Microbiomes and Management Practices -- 1.7 Towards Synthetic Symbiosis: Bioengineering Plant-Soil Microbiomes -- 1.8 Perspectives in Sustainable Agriculture and Food Security -- 1.9 Recent Trends and Outcome in Plant-Soil Microbiome Research -- 1.10 Conclusion and Future Prospects -- References -- 2 Microbes Associated with Crops: Functional Attributes for Crop Productivity -- 2.1 Introduction -- 2.2 Microbes Linked with Crops -- 2.2.1 Rhizospheric Microbiomes -- 2.2.2 Epiphytic Microbiomes -- 2.2.3 Endophytic Microbiomes -- 2.3 Mechanisms of Increasing Crop Productivity and Yield -- 2.3.1 Phosphate Solubilization -- 2.3.2 Siderophores -- 2.3.3 Phytohormones -- 2.3.4 N2 Fixation -- 2.3.5 ISR and ASR -- 2.3.6 ACC Deaminase -- 2.3.7 Lytic Enzymes -- 2.3.8 Nanoparticles -- 2.3.9 Biofilms -- 2.3.10 Antibiotics -- 2.4 Beneficial Effects on Crop Production and Yield -- 2.4.1 Seed Germination Enhancement -- 2.4.2 Stimulation of Plant Growth -- 2.5 Resistance to Abiotic Stress -- 2.5.1 Bioremediation -- 2.5.2 Plant Disease and Pest Control -- 2.6 Factors Affecting Crop Productivity and Yield -- 2.7 Conclusion and Future Prospects -- References -- 3 Soil Microbes with Multifarious Plant Growth Promoting Attributes for Enhanced Production of Food Crops -- 3.1 Introduction -- 3.2 Soil -- 3.2.1 Actinomycetes -- 3.2.2 Fungi.
3.2.3 Algae -- 3.2.4 Protozoa -- 3.2.5 Viruses -- 3.2.6 Nematodes -- 3.2.7 Bacteria -- 3.3 Bacteria that Stimulate the Growth of Plants -- 3.3.1 The Mechanism of Action of Growth-Stimulating Bacteria -- 3.3.2 The Influence of PGPR Bacteria on System Architecture and Root Structure -- 3.4 The Most Important Plant Growth-Promoting Bacteria -- 3.4.1 Azospirillum -- 3.4.2 Azotobacter -- 3.4.3 Phosphobacter -- 3.4.4 Bacillus -- 3.4.5 Pseudomonas in Biological Control -- 3.5 Conclusion -- References -- 4 Phosphorus Solubilization: Mechanisms, Recent Advancement and Future Challenge -- 4.1 Introduction -- 4.2 Importance of Phosphorus for Agriculture -- 4.3 Phosphate Resources and Reserves -- 4.4 Soil Phosphorus Cycle -- 4.5 Different Strategies to Increase Soil Soluble Phosphate Requirement -- 4.6 Environmental Problems of Chemical Fertilizers -- 4.7 Phosphate-Solubilizing Microorganisms -- 4.7.1 Phosphate-Solubilizing Fungi -- 4.7.2 Phosphate-Solubilizing Bacteria (PSB) -- 4.7.3 Phosphate-Solubilizing Actinobacteria -- 4.8 Mechanism of P-Solubilization -- 4.8.1 Inorganic P-Solubilization -- 4.9 Organic P-Solubilization -- 4.10 Plant Growth Promotion by P-Solubilizing Microorganisms -- 4.11 Genetic Manipulation of PSMs -- 4.12 Industrial Production of PSMs as Biofertilizers and Their Application -- 4.12.1 Isolation of PSMs -- 4.12.2 Scaling up of PSMs -- 4.12.3 Methods of Microbial Biofertilizers Application -- 4.13 Future Challenges in PSMs Application -- 4.14 Conclusion -- References -- 5 Potassium Solubilization: Mechanism and Functional Impact on Plant Growth -- 5.1 Introduction -- 5.2 Potassium in Soil -- 5.3 Potassium Requirement for Plant Growth: Function and Deficiency -- 5.4 Potassium Solubilizing Microbes -- 5.5 PGPR for Sustainable Agriculture -- 5.6 Mechanism of Potassium Solubilization by Microorganisms.
5.7 Conclusions and Future Perspectives -- References -- 6 Fe Chelation and Zinc Solubilization: A Promising Approach for Cereals Biofortification -- 6.1 Introduction -- 6.2 Key Problems Associated with Micronutrient Malnutrition -- 6.3 Iron Uptake -- 6.4 Molecular Components Involved in the Uptake of Micronutrients in Cereals -- 6.5 Zinc Solubilization -- 6.6 Mechanism of Zinc Solubilization by PGPR -- 6.7 Biofortification -- 6.7.1 Agronomic Biofortification -- 6.7.2 Breeding Approach Toward Biofortification -- 6.7.3 Biofortification Through Genetic Engineering -- 6.7.4 Molecular Breeding Techniques for Biofortification -- 6.8 Biofortification of Wheat for Fe and Zn -- 6.8.1 Utilization of ph1b Mutant -- 6.8.2 Utilization of Mono 5B Line -- 6.8.3 Radiation-Induced Gene Transfer -- 6.9 Conclusion -- References -- 7 Soil Microbes in Plant Growth Promotion and for Mitigation of Abiotic Stress of Drought -- 7.1 Introduction -- 7.2 Drought Stress and Plant Performance -- 7.3 Microbes-Mediated Drought Tolerance in Plants -- 7.4 Mechanism of Drought Tolerance by Soil Microbiome -- 7.4.1 Alteration of Phytohormones Production in Plants -- 7.4.2 Functions of Volatile Compound -- 7.4.3 Modification in Root Morphology -- 7.4.4 AMF-Mediated Drought Tolerance -- 7.4.5 By Altering Root Morphology -- 7.4.6 AMF-Mediated Water and Nutrient Uptake -- 7.4.7 Challenges to Use Microbial Bio-inoculants -- 7.5 Conclusion and Future Prospects -- References -- 8 Thermotolerant Soil Microbes and Their Role in Mitigation of Heat Stress in Plants -- 8.1 Introduction -- 8.2 Plant Responses to Heat Stress -- 8.2.1 Heat Stress on Plant Physiology -- 8.3 Heat Stress Impacts on Crops -- 8.3.1 Cereals -- 8.3.2 Pulses -- 8.3.3 Oilseeds -- 8.3.4 Cotton -- 8.3.5 Sugarcane -- 8.3.6 Vegetables -- 8.4 Thermotolerant Soil Microbes.
8.5 Role of Thermotolerant Soil Microbes in the Mitigation of Heat Stress -- 8.5.1 Heat Stress in Plants and the Thermotolerant Microbiome -- 8.5.2 Heat Shock Proteins and Heat Shock Transcription Factors Mediated Heat Tolerance -- 8.5.3 Plant Growth Regulator Mediated Heat Tolerance -- 8.5.4 Microbial Mediation of ROS -- 8.5.5 EPS or Biofilm-Based Defense -- 8.5.6 Protective Molecules Moderation -- 8.5.7 Nutrient and Water Uptake -- 8.6 Use of Thermotolerant Soil Microbes for Agricultural Sustainability -- 8.7 Conclusion -- References -- 9 Microbiomes of Hypersaline Soils and Their Role in Mitigation of Salt Stress -- 9.1 Introduction -- 9.2 Adaptations to High Salinity by Halophytes -- 9.3 Hypersaline Soil Microbiome -- 9.4 Role of Hypersaline Soil and Halophyte Microbiomes in Salinity Tolerance -- 9.4.1 Phytohormones Production -- 9.4.2 Mineral Solubilization -- 9.4.3 Biological Nitrogen Fixation -- 9.4.4 ACC Deaminase Production -- 9.4.5 Siderophores and Hydrogen Cyanide Production -- 9.4.6 Exopolysaccharides Matrix -- 9.4.7 Halocins -- 9.4.8 Polyamines and Volatile Organic Compounds -- 9.5 Conclusion and Future Prospects -- References -- 10 Psychrotrophic Soil Microbes and Their Role in Alleviation of Cold Stress in Plants -- 10.1 Introduction -- 10.2 Isolation and Inoculation of Psychrotrophic Bacteria in Maize -- 10.3 Effect of Cold Stress on Physiological Response of Plants -- 10.3.1 Effect of Psychrotrophic Bacteria Nutrient Availability for Plant in Maize Under Cold Stress -- 10.3.2 Effect of Psychrotrophic Bacteria on Photosynthetic Parameters in Maize Under Cold Stress -- 10.3.3 Effect of Psychrotrophic Bacteria on Membrane Permeability-Electrolyte Leakage and Malondialdehyde Content -- 10.3.4 Effect of Psychrotrophic Bacteria on Phytohormones Modulation Under Cold Stress.
10.3.5 Effect of Psychrotrophic Bacteria on Osmotic Stress Management of Plants Under Cold Stress -- 10.3.6 Effect of Psychrotrophic Bacteria on ROS Scavenging Activity in Plants Under Cold Stress -- 10.4 Conclusion -- References -- 11 Strategies for Abiotic Stress Management in Plants Through Soil Rhizobacteria -- 11.1 Introduction -- 11.2 Abiotic Stresses in the Plants -- 11.3 Mitigation of Abiotic Stresses -- 11.4 Salinity, Alkali Stress, and Acidic Stress -- 11.5 Drought Stress -- 11.6 Cold Stress -- 11.6.1 Mechanisms of Bacterial Cold Adaptations -- 11.6.2 Membrane Adaptation in Psychrophiles -- 11.6.3 Transcription and RNA Degradation/stabilization Under Cold Stress -- 11.6.4 Translational Regulations Under Cold Stress -- 11.6.5 Protein Adaptation to the Cold -- 11.7 Heavy Metal Stress -- 11.8 Omics Strategies -- 11.9 Genomics and Metagenomics -- 11.10 Transcriptomics -- 11.11 Proteomics -- 11.12 Metabolomics -- 11.13 Phenomics -- 11.14 Conclusion -- References -- 12 The Omics Strategies for Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants -- 12.1 Introduction -- 12.2 Abiotic Stress Response in Plants -- 12.2.1 Salinity Stress -- 12.2.2 Drought Stress -- 12.2.3 Submergence and Flood Stress -- 12.2.4 Heat Stress -- 12.2.5 Low Temperature Stress -- 12.2.6 High Light Stress -- 12.2.7 Soil Acidity Stress -- 12.2.8 Heavy Metal Stress -- 12.3 Physiological and Molecular Response of Plants Against Stress -- 12.4 Role of Microbiomes in Plant Defense and the Immune System Against Stress -- 12.5 Omics Approaches for Mitigation of Abiotic Stress -- 12.5.1 Genomics -- 12.5.2 Metagenomics -- 12.5.3 Transgenomics -- 12.5.4 Proteomics -- 12.5.5 Metabolomics -- 12.5.6 Transcriptomics -- 12.5.7 Lipidomics -- 12.5.8 Micromics -- 12.6 Conclusion -- References.
13 Plant Probiotics: Technical Challenges and Emerging Solutions for Enhancing Food Crops.
Titolo autorizzato: Soil microbiomes for sustainable agriculture  Visualizza cluster
ISBN: 3-030-73507-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910488718403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Sustainable Development and Biodiversity