Vai al contenuto principale della pagina
Titolo: | Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 : 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III / / edited by Nassir Navab, Joachim Hornegger, William M. Wells, Alejandro Frangi |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
Edizione: | 1st ed. 2015. |
Descrizione fisica: | 1 online resource (XXVII, 780 p. 323 illus., 123 illus. in color.) |
Disciplina: | 610.285 |
Soggetto topico: | Optical data processing |
Pattern recognition | |
Computer graphics | |
Artificial intelligence | |
Radiology | |
Health informatics | |
Image Processing and Computer Vision | |
Pattern Recognition | |
Computer Graphics | |
Artificial Intelligence | |
Imaging / Radiology | |
Health Informatics | |
Persona (resp. second.): | NavabNassir |
HorneggerJoachim | |
WellsWilliam M | |
FrangiAlejandro | |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di contenuto: | Intro -- Preface -- Organization -- Contents - Part III -- Quantitative Image Analysis I: Segmentation and Measurement -- Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation -- 1 Introduction -- 2 Methods -- 3 Experiments and Results -- 4 Conclusions -- References -- Unsupervised Myocardial Segmentation for Cardiac MRI -- 1 Introduction -- 2 Related Work -- 3 Method -- 4 Results -- 5 Discussions and Conclusion -- References -- Multimodal Cortical Parcellation Based on Anatomical and Functional Brain Connectivity -- 1 Introduction -- 2 Materials -- 2.1 RS-fMRI Data -- 2.2 dMRI Data -- 3 Methods -- 3.1 Estimating Brain Connectivity -- 3.2 Adaptively Weighted Multimodal Connectivity Model -- 3.3 Affinity Matrix Estimation -- 4 Results and Discussion -- 4.1 Quantitative Results -- 4.2 Qualitative Results -- 5 Conclusions -- References -- Slic-Seg: Slice-by-Slice Segmentation Propagation of the Placenta in Fetal MRI Using One-Plane Scribbles and Online Learning -- 1 Introduction -- 2 Methods -- 3 Experiments and Results -- 4 Conclusion -- References -- GPSSI: Gaussian Process for Sampling Segmentations of Images -- 1 Introduction -- 2 Existing Generative Models of Segmentations -- 3 GPSSI -- 3.1 Definition -- 3.2 Efficient Sampling -- 4 Results -- 4.1 Parameter Setting -- 4.2 Segmentation Sampling -- 5 Tumor Delineation Uncertainty in Radiotherapy -- 6 Conclusion -- References -- Multi-Level Parcellation of the Cerebral Cortex Using Resting-State fMRI -- 1 Introduction -- 2 Methodology -- 2.1 Data Acquisition and Preprocessing -- 2.2 Initial Parcellation via Supervertex Clustering -- 2.3 Single-Level Parcellation via Hierarchical Clustering -- 2.4 Groupwise Parcellation via Spectral Clustering -- 3 Results -- 4 Conclusions -- References -- Interactive Multi-organ Segmentation Based on Multiple Template Deformation. |
1 Medical Motivation and Overview -- 2 Methodology -- 2.1 Multiple Implicit Template Deformation with User Constraints -- 2.2 Numerical Optimization -- 2.3 Enhancing the Framework for Local Contours Editing -- 2.4 Flexibility of the Framework -- 3 A Study for the Evaluation of the User Interactions -- 4 Conclusion -- References -- Segmentation of Infant Hippocampus Using Common Feature Representations Learned for Multimodal Longitudinal Data -- 1 Introduction -- 2 Method -- 2.1 Hierarchical Learn ning of Common Feature Representations -- 2.2 Patch-Based Label Fusion for Hippocampus Segmentation -- 3 Experimental Results -- 4 Conclusion -- References -- Measuring Cortical Neurite-Dispersion and Perfusion in Preterm-Born Adolescents Using Multi-modal MRI -- 1 Introduction -- 2 Methods -- 3 Results -- 3.1 Comparison of DWI with and without Additional T2 Imaging -- 3.2 Comparison of Quantitative Neuroimaging Parameters -- 3.3 Correlation of Diffusion MRI and Cerebral Blood Flow -- 4 Discussion -- References -- Interactive Whole-Heart Segmentation in Congenital Heart Disease -- 1 Introduction -- 2 Patch-Based Interactive Segmentation -- 3 Empirical Study: Active Learning for Reference Selection -- 4 Results -- 5 Conclusions -- References -- Automatic 3D US Brain Ventricle Segmentation in Pre-Term Neonates Using Multi-phase Geodesic Level-Sets with Shape Prior -- 1 Introduction -- 2 Method -- 3 Experiments and Results -- 4 Discussion and Conclusion -- References -- Multiple Surface Segmentation Using Truncated Convex Priors -- 1 Introduction -- 2 Method -- 3 Experimental Methods -- 4 Results -- 5 Discussion and Conclusion -- References -- Statistical Power in Image Segmentation: Relating Sample Size to Reference Standard Quality -- 1 Introduction -- 2 Derivation of the Sample Size Formula -- 2.1 Sample Size for Segmentation Accuracy. | |
2.2 Sample Size in Terms of the High Quality Reference Standard -- 3 Simulations -- 4 Results -- 5 Case Study -- 6 Discussion -- References -- Joint Learning of Image Regressor and Classifier for Deformable Segmentation of CT Pelvic Organs -- 1 Introduction -- 2 Method -- 2.1 Joint Learning of Image Regressor and Classifier -- 2.2 Deformable Segmentation with Regressor and Classifier -- 3 Experimental Results -- 4 Conclusion -- References -- Corpus Callosum Segmentation in MS Studies Using Normal Atlases and Optimal Hybridization of Extrinsic and Intrinsic Image Cues -- 1 Introduction -- 2 Methods -- 3 Evaluation Results -- 4 Conclusions -- References -- Brain Tissue Segmentation Based on Diffusion MRI Using l 0 Sparse-Group Representation Classification -- 1 Introduction -- 2 Approach -- 3 Experiments -- 3.1 Data -- 3.2 Diffusion Parameters -- 3.3 Comparison Methods -- 3.4 Results -- 4 Conclusion -- References -- A Latent Source Model for Patch-Based Image Segmentation -- 1 Introduction -- 2 Pointwise Segmentation and a Theoretical Guarantee -- 3 Multipoint Segmentation -- 4 Conclusions -- References -- Multi-organ Segmentation Using Shape Model Guided Local Phase Analysis -- 1 Introduction -- 2 Method -- 2.1 Quadrature Filters and Model Guided Local Phase Analysis -- 2.2 Integrating Region-Based and Edge-Based Energy in the Level-Set Method -- 2.3 Hierarchical Segmentation Pipeline and Multi-scale Phase Analysis -- 3 Experiments and Results -- 4 Discussion and Conclusion -- References -- Filling Large Discontinuities in 3D Vascular Networks Using Skeleton- and Intensity-Based Information -- 1 Introduction -- 2 Methodology -- 2.1 Method Overview -- 2.2 Gap Filling -- 2.3 Generating the Second-Order Tensor Field T -- 2.4 Deriving a Saliency Map S and Preferential Directions D from T -- 2.5 Generating the Enhancement Map E -- 3 Results. | |
3.1 Synthetic Data -- 3.2 3D Images of Tumour Vasculature -- 4 Discussion -- References -- A Continuous Flow-Maximisation Approach to Connectivity-Driven Cortical Parcellation -- 1 Introduction -- 2 Methodology -- 2.1 Iterative Markov Random Field Formulation -- 2.2 Continuous Max-Flow Optimisation -- 3 Results -- 4 Discussion -- References -- A 3D Fractal-Based Approach towards Understanding Changes in the Infarcted Heart Microvasculature -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition and Pre-processing -- 2.2 Segmentation -- 2.3 Fractal-Based Methods -- 3 Results -- 4 Conclusions -- References -- Segmenting the Uterus in Monocular Laparoscopic Images without Manual Input -- 1 Introduction and Background -- 2 Methodology -- 3 Experimental Results -- 4 Conclusion -- References -- Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution -- 1 Introduction -- 2 Proposed Method -- 2.1 Dictionary Construction -- 2.2 Multi-layer Label Fusion -- 3 Experiments -- 3.1 Dataset and Parameters -- 3.2 Hippocampus Segmentation Results -- 4 Conclusion -- References -- Multi-atlas Based Segmentation Editing with Interaction-Guided Constraints -- 1 Introduction -- 2 Multi-atlas Based Editing Method -- 2.1 Extraction of Local Interaction Combinations -- 2.2 Selection of Training Labels with respect to User Interactions -- 2.3 Label Fusion Based on User Interactions -- 3 Experimental Result -- 4 Conclusion -- References -- Quantitative Image Analysis II: Microscopy, Fluorescence and Histological Imagery -- Improving Convenience and Reliability of 5-ALA-Induced Fluorescent Imaging for Brain Tumor Surgery -- 1 Introduction -- 2 Concept of the Image Acquisition System -- 3 Imaging Formula -- 4 Experiment -- 4.1 Prototype System Building -- 4.2 Real Time Image Processing and Display -- 4.3 Quantitative Imaging Technique. | |
5 Discussion and Conclusions -- References -- Analysis of High-throughput Microscopy Videos: Catching Up with Cell Dynamics -- 1 Introduction -- 2 Methods -- 2.1 Problem Formulation -- 2.2 Time Series Analysis -- 2.3 Dynamic Shape Model -- 2.4 MAP Segmentation and Association -- 3 Experimental Results -- 4 Summary and Conclusions -- References -- Neutrophils Identification by Deep Learning and Voronoi Diagram of Clusters -- 1 Introduction -- 2 Modeling Individual Cell Appearances by CNN -- 3 Modeling Cell Context by VDC -- 4 Experiments and Evaluation -- 5 Conclusions -- References -- U-Net: Convolutional Networks for Biomedical Image Segmentation -- 1 Introduction -- 2 Network Architecture -- 3 Training -- 3.1 Data Augmentation -- 4 Experiments -- 5 Conclusion -- References -- Co-restoring Multimodal Microscopy Images -- 1 Introduction -- 2 Data Acquisition -- 3 Methodology -- 3.1 Theoretical Foundation of Microscopy Image Restoration -- 3.2 Multimodal Microscopy Image Restoration Algorithm -- 3.3 Build a Look-Up Table for Better Initialization -- 3.4 Cell Segmentation and Classification Based on Co-restoration -- 4 Experimental Results -- 4.1 Qualitative Evaluation -- 4.2 Quantitative Evaluation -- 5 Conclusion -- References -- A 3D Primary Vessel Reconstruction Framework with Serial Microscopy Images -- 1 Introduction -- 2 Methods for 3D Vessel Reconstruction -- 2.1 Automated 2D Vessel Segmentation -- 2.2 Two-Stage Vessel Association with Vessel Cross-Sections -- 3 Experimental Results and Validation -- 4 Conclusion -- References -- Adaptive Co-occurrence Differential Texton Space for HEp-2 Cells Classification -- 1 Introduction -- 2 Method -- 2.1 Co-occurrence Differential Texton -- 2.2 HEp-2 Cell Image Representation in the Adaptive CoDT Feature Space -- 3 Experiments and Comparisons -- 3.1 Datasets -- 3.2 Experimental Results -- 4 Conclusion. | |
References. | |
Sommario/riassunto: | The three-volume set LNCS 9349, 9350, and 9351 constitutes the refereed proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, held in Munich, Germany, in October 2015. Based on rigorous peer reviews, the program committee carefully selected 263 revised papers from 810 submissions for presentation in three volumes. The papers have been organized in the following topical sections: quantitative image analysis I: segmentation and measurement; computer-aided diagnosis: machine learning; computer-aided diagnosis: automation; quantitative image analysis II: classification, detection, features, and morphology; advanced MRI: diffusion, fMRI, DCE; quantitative image analysis III: motion, deformation, development and degeneration; quantitative image analysis IV: microscopy, fluorescence and histological imagery; registration: method and advanced applications; reconstruction, image formation, advanced acquisition - computational imaging; modelling and simulation for diagnosis and interventional planning; computer-assisted and image-guided interventions. . |
Titolo autorizzato: | Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 |
ISBN: | 3-319-24574-0 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910484376703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |