Vai al contenuto principale della pagina
| Autore: |
Hovey Mark <1965->
|
| Titolo: |
Axiomatic stable homotopy theory / / Mark Hovey, John H. Palmieri, Neil P. Strickland
|
| Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| ©1997 | |
| Descrizione fisica: | 1 online resource (130 p.) |
| Disciplina: | 510 s |
| 514/.24 | |
| Soggetto topico: | Homotopy theory |
| Soggetto genere / forma: | Electronic books. |
| Persona (resp. second.): | PalmieriJohn H <1964-> (John Harold) |
| StricklandNeil P. <1966-> | |
| Note generali: | "July 1997, volume 128, number 610 (second of 4 numbers)." |
| Nota di bibliografia: | Includes bibliographical references (pages 109-111) and index. |
| Nota di contenuto: | ""Contents""; ""1. Introduction and definitions""; ""1.1. The axioms""; ""1.2. Examples""; ""1.3. Multigrading""; ""1.4. Some basic definitions and results""; ""2. Smallness, limits and constructibility""; ""2.1. Notions of finiteness""; ""2.2. Weak colimits and limits""; ""2.3. Cellular towers and constructibility""; ""3. Bousfield localization""; ""3.1. Localization and colocalization functors""; ""3.2. Existence of localization functors""; ""3.3. Smashing and finite localizations""; ""3.4. Geometric morphisms""; ""3.5. Properties of localized subcategories""; ""3.6. The Bousfield lattice"" |
| ""3.7. Rings, fields and minimal Bousfield classes""""3.8. Bousfield classes of smashing localizations""; ""4. Brown representability""; ""4.1. Brown categories""; ""4.2. Minimal weak colimits""; ""4.3. Smashing localizations of Brown categories""; ""4.4. A topology on [X, Y]""; ""5. Nilpotence and thick subcategories""; ""5.1. A naive nilpotence theorem""; ""5.2. A thick subcategory theorem""; ""6. Noetherian stable homotopy categories""; ""6.1. Monochromatic subcategories""; ""6.2. Thick subcategories""; ""6.3. Localizing subcategories""; ""7. Connective stable homotopy theory"" | |
| ""8. Semisimple stable homotopy theory""""9. Examples of stable homotopy categories""; ""9.1. A general method""; ""9.2. Chain complexes""; ""9.3. he derived category of a ring""; ""9.4. Homotopy categories of equivariant spectra""; ""9.5. Cochain complexes of B�comodules""; ""9.6. The stable category of B�modules""; ""10. Future directions""; ""10.1. Grading systems on stable homotopy categories""; ""10.2. Other examples""; ""Appendix A. Background from category theory""; ""A.1. Triangulated categories""; ""A.2. Closed symmetric monoidal categories""; ""References""; ""Index"" | |
| Titolo autorizzato: | Axiomatic stable homotopy theory ![]() |
| ISBN: | 1-4704-0195-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910480978403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |