Vai al contenuto principale della pagina
Autore: | Hooper Jeff <1968-> |
Titolo: | The second Chinburg conjecture for quaternion fields / / Jeff Hooper, Victor Snaith, Minh van Tran |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2000] |
©2000 | |
Descrizione fisica: | 1 online resource (146 p.) |
Disciplina: | 510 s |
512/.74 | |
Soggetto topico: | Galois modules (Algebra) |
Quaternions | |
Soggetto genere / forma: | Electronic books. |
Persona (resp. second.): | SnaithVictor P <1944-> (Victor Percy) |
TranMinh Van <1963-> | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | ""Contents""; ""Introduction""; ""Chapter 1. Class-groups of group-rings""; ""1. Hom Descriptions""; ""2. The class-group of Z[Q[sub(8)]]""; ""3. The second Chinburg conjecture""; ""Chapter 2. The evaluation of [X]""; ""1. A Hom-description representative of [X]""; ""2. Kim's Examples""; ""Chapter 3. Quaternion fields over Q[sub(2)]""; ""1. Galois actions""; ""2. Fundamental 2-extensions""; ""3. The fundamental 2-extension in Case A""; ""4. The fundamental 2-extension in Case B""; ""5. The fundamental 2-extension in Case C""; ""Chapter 4. The Invariant in Cases A, B and C"" |
""1. The strategy of the calculation""""2. Evaluating [Ker(k')] in Case A""; ""3. Evaluating [Ker(k')] in Case B""; ""4. Evaluating [Ker(k')] in Case C""; ""Chapter 5. The evaluation of [M]""; ""1. The class [M] in Case A""; ""2. The class [M] in Case B""; ""3. The class [M] in Case C""; ""Chapter 6. The conjecture in Cases A, B and C""; ""1. Evaluation of [X] in Cases A, B and C""; ""2. The proof in Cases A, B and C""; ""Chapter 7. Epilogue""; ""1. Related and Subsequent Results""; ""Bibliography""; ""Index"" | |
Titolo autorizzato: | The second Chinburg conjecture for quaternion fields |
ISBN: | 1-4704-0295-5 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910479989103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |