Vai al contenuto principale della pagina

Development of modern statistics and related topics [[electronic resource] ] : in celebration of Prof. Yaoting Zhang's 70th birthday / / edited by Heping Zhang, Jian Huang



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Development of modern statistics and related topics [[electronic resource] ] : in celebration of Prof. Yaoting Zhang's 70th birthday / / edited by Heping Zhang, Jian Huang Visualizza cluster
Pubblicazione: River Edge, NJ, : World Scientific Pub. Co., c2003
Descrizione fisica: 1 online resource (301 p.)
Disciplina: 519.5
Soggetto topico: Statistics
Soggetto genere / forma: Electronic books.
Altri autori: ZhangYaoting <1933->  
ZhangHeping  
HuangJian  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Contents ; Preface ; An Interview with Professor Yaoting Zhang ; Growing Up ; Professor Paolu Hsu and Statistics ; During the 'Culture Revolution' ; After 'Culture Revolution' ; I am Proud of My Students ; Significance Level in Interval Mapping ; 1. Introduction ; 2. Known Results
3. A Combined Approximation 4. The Interval Mapping Process in the Gaussian Limit ; 5. Likelihood Ratio Transformation ; 6. Rice-Davies Approximation ; 7. Evaluation of (9) ; 8. Remarks ; References ; An Asymptotic Pythagorean Identity ; 1. Introduction
2. Pythagorean Identity for Variance Calculation 3. Examples ; 4. Remarks ; References ; A Monte Carlo Gap Test in Computing HPD Regions ; 1. Introduction ; 2. Current Monte Carlo Methods ; 3. Monte Carlo Gap Tests ; 4. A Simulation Study ; 5. Concluding Remarks ; References
Estimating Restricted Normal Means Using the EM-type Algorithms and IBF Sampling 1. Introduction ; 2. Nonproduct versus Product Parameter Space ; 3. Estimation When Variances Are Known ; 4. Estimation when variances are Unknown ; 5. Applications ; 6. Discussion ; References
An Example of Algorithm Mining: Covariance Adjustment to Accelerate EM and Gibbs 1. An Overview ; 2. The Student-t Distribution ; 3. The EM Algorithm ; 4. The DA Algorithm ; 5. The PX-EM Algorithm ; 6. The PX-DA Algorithm ; 7. The CA-DA Algorithm ; 8. Discussion ; References
Large Deviations and Deviation Inequality for Kernel Density Estimator in L1(RD)-distance
Sommario/riassunto: This book encompasses a wide range of important topics. The articles cover the following areas: asymptotic theory and inference, biostatistics, economics and finance, statistical computing and Bayesian statistics, and statistical genetics. Specifically, the issues that are studied include large deviation, deviation inequalities, local sensitivity of model misspecification in likelihood inference, empirical likelihood confidence intervals, uniform convergence rates in density estimation, randomized designs in clinical trials, MCMC and EM algorithms, approximation of p-values in multipoint link
Titolo autorizzato: Development of modern statistics and related topics  Visualizza cluster
ISBN: 1-281-95609-0
9786611956097
981-279-670-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910454078503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Series in biostatistics ; ; v. 1.