Vai al contenuto principale della pagina

Mathematics of Aperiodic Order / / edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Mathematics of Aperiodic Order / / edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien Visualizza cluster
Pubblicazione: Basel : , : Springer Basel : , : Imprint : Birkhäuser, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (438 p.)
Disciplina: 512.25
516.11
Soggetto topico: Convex geometry 
Discrete geometry
Dynamics
Ergodic theory
Operator theory
Number theory
Global analysis (Mathematics)
Manifolds (Mathematics)
Convex and Discrete Geometry
Dynamical Systems and Ergodic Theory
Operator Theory
Number Theory
Global Analysis and Analysis on Manifolds
Persona (resp. second.): KellendonkJohannes
LenzDaniel
SavinienJean
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto: Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrödinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.
Sommario/riassunto: What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrödinger operators, and connections to arithmetic number theory.
Titolo autorizzato: Mathematics of aperiodic order  Visualizza cluster
ISBN: 3-0348-0903-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299775303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Progress in Mathematics, . 0743-1643 ; ; 309