Vai al contenuto principale della pagina

Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) / / Andrea Ratto, James Eells



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Eells James Visualizza persona
Titolo: Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) / / Andrea Ratto, James Eells Visualizza cluster
Pubblicazione: Princeton, NJ : , : Princeton University Press, , [2016]
©1993
Descrizione fisica: 1 online resource (235 pages) : illustrations
Disciplina: 514/.7
Soggetto topico: Harmonic maps
Immersions (Mathematics)
Differential equations, Elliptic - Numerical solutions
Soggetto non controllato: Arc length
Catenary
Clifford algebra
Codimension
Coefficient
Compact space
Complex projective space
Connected sum
Constant curvature
Corollary
Covariant derivative
Curvature
Cylinder (geometry)
Degeneracy (mathematics)
Diagram (category theory)
Differential equation
Differential geometry
Elliptic partial differential equation
Embedding
Energy functional
Equation
Existence theorem
Existential quantification
Fiber bundle
Gauss map
Geometry and topology
Geometry
Gravitational field
Harmonic map
Hyperbola
Hyperplane
Hypersphere
Hypersurface
Integer
Iterative method
Levi-Civita connection
Lie group
Mathematics
Maximum principle
Mean curvature
Normal (geometry)
Numerical analysis
Open set
Ordinary differential equation
Parabola
Quadratic form
Sign (mathematics)
Special case
Stiefel manifold
Submanifold
Suggestion
Surface of revolution
Symmetry
Tangent bundle
Theorem
Vector bundle
Vector space
Vertical tangent
Winding number
Persona (resp. second.): RattoAndrea
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Frontmatter -- INTRODUCTION -- TABLE OF CONTENTS -- PART 1. BASIC VARIATIONAL AND GEOMETRICAL PROPERTIES -- PART 2. G-INVARIANT MINIMAL AND CONSTANT MEAN CURVATURE IMMERSIONS -- PART 3. HARMONIC MAPS BETWEEN SPHERES -- APPENDIX 1. SECOND VARIATIONS -- APPENDIX 2. RIEMANNIAN IMMERSIONS Sm → Sn -- APPENDIX 3. MINIMAL GRAPHS AND PENDENT DROPS -- APPENDIX 4. FURTHER ASPECTS OF PENDULUM TYPE EQUATIONS -- REFERENCES -- INDEX
Sommario/riassunto: The aim of this book is to study harmonic maps, minimal and parallel mean curvature immersions in the presence of symmetry. In several instances, the latter permits reduction of the original elliptic variational problem to the qualitative study of certain ordinary differential equations: the authors' primary objective is to provide representative examples to illustrate these reduction methods and their associated analysis with geometric and topological applications. The material covered by the book displays a solid interplay involving geometry, analysis and topology: in particular, it includes a basic presentation of 1-cohomogeneous equivariant differential geometry and of the theory of harmonic maps between spheres.
Titolo autorizzato: Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130  Visualizza cluster
ISBN: 1-4008-8250-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910154754703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Annals of mathematics studies ; ; no. 130.