Vai al contenuto principale della pagina
Autore: | König Steffen <1961-> |
Titolo: | Derived equivalences for group rings / / Steffen König, Alexander Zimmermann with contributions by Bernhard Keller |
Pubblicazione: | Berlin, Germany ; ; New York, New York : , : Springer, , [1998] |
©1998 | |
Edizione: | 1st ed. 1998. |
Descrizione fisica: | 1 online resource (X, 246 p.) |
Disciplina: | 512.2 |
Soggetto topico: | Group rings |
Algebra, Homological | |
Persona (resp. second.): | ZimmermannAlexander <1964-> |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references (pages [233]-243) and index. |
Nota di contenuto: | Basic definitions and some examples -- Rickard's fundamental theorem -- Some modular and local representation theory -- Onesided tilting complexes for group rings -- Tilting with additional structure: twosided tilting complexes -- Historical remarks -- On the construction of triangle equivalences -- Triangulated categories in the modular representation theory of finite groups -- The derived category of blocks with cyclic defect groups -- On stable equivalences of Morita type. |
Sommario/riassunto: | A self-contained introduction is given to J. Rickard's Morita theory for derived module categories and its recent applications in representation theory of finite groups. In particular, Broué's conjecture is discussed, giving a structural explanation for relations between the p-modular character table of a finite group and that of its "p-local structure". The book is addressed to researchers or graduate students and can serve as material for a seminar. It surveys the current state of the field, and it also provides a "user's guide" to derived equivalences and tilting complexes. Results and proofs are presented in the generality needed for group theoretic applications. |
Titolo autorizzato: | Derived equivalences for group rings |
ISBN: | 3-540-69748-9 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910146300603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |