Vai al contenuto principale della pagina

Strong and weak approximation of semilinear stochastic evolution equations [e-book] / Raphael Kruse



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kruse, Raphael Visualizza persona
Titolo: Strong and weak approximation of semilinear stochastic evolution equations [e-book] / Raphael Kruse Visualizza cluster
Descrizione fisica: 1 online resource (xiv, 177 p. : il.)
Disciplina: 519.22
Soggetto topico: Evolution equations
Stochastic integral equations
Stochastic partial differential equations
Classificazione: AMS 60H15
AMS 35R60
AMS 60H07
AMS 65-02
AMS 65C
LC QA3.L28
Note generali: Based on the author's thesis (doctoral)--Universität Bielefeld, 2012
Nota di bibliografia: Includes bibliographical references (pages 171-174) and index
Nota di contenuto: Introduction ; Stochastic evolution equations in Hilbert spaces ; Optimal strong error estimates for Galerkin finite element methods ; A short review of the Malliavin calculus in Hilbert spaces ; A Malliavin calculus approach to weak convergence ; Numerical experiments
Sommario/riassunto: In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut's integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq
ISBN: 9783319022314 (ebook)
Formato: Software
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 991003325449707536
Lo trovi qui: Univ. del Salento
Localizzazioni e accesso elettronico http://link.springer.com/book/10.1007/978-3-319-02231-4
Opac: Controlla la disponibilità qui
Serie: Lecture notes in mathematics, 1617-9692 ; 2093
Altra ed. diverso supporto: Printed edition: 9783319022307 Fa parte di: SpringereBooks