Vai al contenuto principale della pagina

Advanced carbon materials and technology / / edited by Ashutosh Tiwari and S.K. Shukla



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Advanced carbon materials and technology / / edited by Ashutosh Tiwari and S.K. Shukla Visualizza cluster
Pubblicazione: Salem, Massachusetts : , : Scrivener Publishing, , [2014]
©2014
Descrizione fisica: 1 online resource (514 p.)
Disciplina: 620.193
Soggetto topico: Carbon
Carbon composites
Altri autori: TiwariAshutosh <1978->  
ShuklaS. K  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover; Title Page; Copyright Page; Contents; Preface; Part 1 Graphene, Carbon Nanotubes and Fullerenes; 1 Synthesis, Characterization and Functionalization of Carbon Nanotubes and Graphene: A Glimpse of Their Application; 1.1 Introduction; 1.2 Synthesis and Characterization of Carbon Nanotubes; 1.3 Synthesis and Characterization of Graphene; 1.3.1 Micromechanical Cleavage of Highly Oriented Pyrolytic Graphite; 1.3.2 Chemical Vapor Deposition Growth of Graphene either as Stand Alone or on Substrate; 1.3.3 Chemical and Thermal Exfoliation of Graphite Oxide; 1.3.4 Arc-Discharge Method
1.4 Methods Used in Our Lab: CVD, Thermal Exfoliation, Arc Discharge and Chemical Reduction1.4.1 Raman Spectra; 1.4.2 Electrochemical Exfoliation; 1.5 Functionalization of Carbon Nanotubes and Graphene; 1.5.1 Covalent Functionalization; 1.5.2 Non-Covalent Functionalization; 1.5.3 FTIR Analysis of CNTs and FCNTs; 1.6 Applications; 1.7 Conclusion; Acknowledgements; References; 2 Surface Modification of Graphene; 2.1 Introduction; 2.2 Surface-Modified Graphene from GO; 2.2.1 Covalent Surface Modification; 2.2.2 Non-covalent Surface Modification; 2.3 Application of Surface-Modified Graphene
2.3.1 Polymer Composites2.3.2 Sensors; 2.3.3 Drug Delivery System; 2.3.4 Lubricants; 2.3.5 Nanofluids; 2.3.6 Supercapacitor; 2.4 Conclusions and Future Directions of Research; Acknowledgement; References; 3 Graphene and Carbon Nanotube-based Electrochemical Biosensors for Environmental Monitoring; 3.1 Introduction; 3.1.1 Carbon Nanotubes (CNTs); 3.1.2 Graphene (GR); 3.1.3 Electrochemical Sensors; 3.1.4 Sensors and Biosensors Based on CNT and GR; 3.2 Applications of Electrochemical Biosensors; 3.2.1 Heavy Metals; 3.2.2 Phenols; 3.2.3 Pesticides; 3.3 Conclusions and Future Perspectives
References4 Catalytic Application of Carbon-based Nanostructured Materials on Hydrogen Sorption Behavior of Light Metal Hydrides; 4.1 Introduction; 4.2 Different Carbon Allotropes; 4.3 Carbon Nanomaterials as Catalyst for Different Storage Materials; 4.4 Key Results with MgH2, NaAlH4 and Li-Mg-N-H Systems; 4.4.1 Magnesium Hydride; 4.4.2 Sodium Alanate; 4.4.3 Amides/Imides; 4.5 Summary; Acknowledgements; References; 5 Carbon Nanotubes and Their Applications; 5.1 Introduction; 5.2 Carbon Nanotubes Structure; 5.3 Carbon Nanotube Physical Properties; 5.4 Carbon Nanotube Synthesis and Processing
5.5 Carbon Nanotube Surface Modification5.6 Applications of Carbon Nanotubes; 5.6.1 Composite Materials; 5.6.2 Nano Coatings - Antimicrobials and Microelectronics; 5.6.3 Biosensors; 5.6.4 Energy Storages; 5.7 Conclusion; References; 6 Bioimpact of Carbon Nanomaterials; 6.1 Biologically Active Fullerene Derivatives; 6.1.1 Introduction; 6.1.2 Functionalization/Derivatization of Fullerene C60; 6.1.3 Biological Activity of Non-Derivatized Fullerene C60; 6.1.4 Biological Activity of Derivatized Fullerene C60; 6.1.5 Chemical Synthesis of Fullerenol C60(OH)n; 6.1.6 Fullerenol and Biosystems
6.2 Biologically Active Graphene Materials
Sommario/riassunto: The expansion of carbon materials is multidisciplinary and is related to physics, chemistry, biology, applied sciences and engineering. The research on carbon materials has mostly focused on aspects of fundamental physics as they unique electrical, thermal and mechanical properties applicable for the range of applications. The electrons in graphene and other derived carbon materials behave as dirac fermions due to their interaction with the ions of the lattice. This direction has led to the discovery of new phenomena such as Klein tunneling in carbon based solid state systems and the so-called
Titolo autorizzato: Advanced carbon materials and technology  Visualizza cluster
ISBN: 1-118-89543-6
1-118-89539-8
1-118-89536-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996208435403316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Advance Materials Series