Vai al contenuto principale della pagina

Machine Learning and Knowledge Discovery in Databases [[electronic resource] ] : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part III / / edited by Albert Bifet, Michael May, Bianca Zadrozny, Ricard Gavalda, Dino Pedreschi, Francesco Bonchi, Jaime Cardoso, Myra Spiliopoulou



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Machine Learning and Knowledge Discovery in Databases [[electronic resource] ] : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part III / / edited by Albert Bifet, Michael May, Bianca Zadrozny, Ricard Gavalda, Dino Pedreschi, Francesco Bonchi, Jaime Cardoso, Myra Spiliopoulou Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (XXX, 345 p. 122 illus.)
Disciplina: 006.31
Soggetto topico: Data mining
Artificial intelligence
Pattern recognition
Information storage and retrieval
Database management
Application software
Data Mining and Knowledge Discovery
Artificial Intelligence
Pattern Recognition
Information Storage and Retrieval
Database Management
Information Systems Applications (incl. Internet)
Persona (resp. second.): BifetAlbert
MayMichael
ZadroznyBianca
GavaldaRicard
PedreschiDino
BonchiFrancesco
CardosoJaime
SpiliopoulouMyra
Note generali: Includes index.
Sommario/riassunto: The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.
Titolo autorizzato: Machine Learning and Knowledge Discovery in Databases  Visualizza cluster
ISBN: 3-319-23461-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996200360203316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Artificial Intelligence ; ; 9286