Vai al contenuto principale della pagina
Autore: | Bai Yong |
Titolo: | Flexible Pipelines and Power Cables |
Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
©2024 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (783 pages) |
Altri autori: | YuanShuai JiangKaien |
Nota di contenuto: | Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Part I: Design and Application -- Chapter 1 Introduction -- 1.1 General -- 1.1.1 Flexible Pipelines -- 1.1.2 Subsea Power Cables -- 1.2 Design Issues -- 1.2.1 Design of Flexible Pipelines -- 1.2.2 Design of Subsea Power Cables -- 1.3 Applications -- 1.3.1 Flexible Pipelines -- 1.3.2 Subsea Power Cables -- 1.3.2.1 Offshore Wind Farms -- 1.3.2.2 Supply of Offshore Platforms -- 1.3.2.3 Islands Power Supply -- References -- Chapter 2 Cross-Sectional Design of Unbonded Flexible Pipeline -- 2.1 Introduction -- 2.2 Cross-Sectional Design -- 2.2.1 General Design Requirements -- 2.2.2 Manufacturing Configuration and Material Qualification -- 2.3 Case Study -- 2.3.1 Design Procedure -- 2.3.2 Design Requirement -- 2.3.3 Design Method -- 2.3.4 Design Results -- 2.3.5 Load Analysis -- 2.3.6 FE Analysis -- 2.4 Conclusions -- References -- Chapter 3 General Design of Subsea Power Cables -- 3.1 Introduction -- 3.2 Design Procedure of Subsea Power Cables -- 3.3 Design Component of Subsea Power Cables -- 3.3.1 Conductor -- 3.3.1.1 Solid Conductor -- 3.3.1.2 Conductors Stranded from Round Wires -- 3.3.1.3 Profiled Wire Conductors -- 3.3.2 Dielectric System -- 3.3.2.1 Polyethylene -- 3.3.3 Swelling Tape -- 3.3.4 Water-Blocking Sheath -- 3.3.5 Copper Sheath -- 3.3.5.1 Metallic Sheath -- 3.3.6 Aluminium Sheath -- 3.3.6.1 Stainless Steel Sheath -- 3.3.6.2 Polymeric Sheath -- 3.3.7 Armoring -- 3.3.8 Outer Serving -- References -- Chapter 4 Mechanical and Electrical Design of Subsea Power Cables -- 4.1 Mechanical Design -- 4.1.1 Tension During Cable Laying -- 4.1.2 Stress Between Conductor and Armoring -- 4.1.3 Other Loads and Impacts -- 4.1.4 Vortex Induced Vibrations -- 4.2 Electric Design -- 4.2.1 Concept of Electric Strength -- 4.2.2 Dielectric Design of AC Cables. |
4.2.2.1 Overvoltage -- 4.2.2.2 Design Specification -- 4.2.3 Dielectric Design of DC Cables -- 4.2.4 Impulse Stress -- 4.2.5 Availability and Reliability -- 4.2.6 Calculation of Cable Ampacity -- 4.2.6.1 The Procedure for Calculating the Cable Ampacity h -- 4.2.6.2 Calculation Method -- 4.2.7 Allowable Short-Circuit Current -- 4.3 Cable Insulation Design -- 4.3.1 Design Principles for Insulation Thickness -- 4.3.2 Cable Insulation Design -- 4.3.2.1 Design with Average Electric Field Intensity Formula -- 4.3.3 Aging of Cable Insulation -- 4.3.4 Case Study of Insulation Thickness -- 4.3.4.1 YJV-21/35 1~200 XLPE Single Core Cable -- 4.3.4.2 66KV XLPE Single Core Cable -- References -- Chapter 5 Joints and Termination of Subsea Power Cables -- 5.1 Introduction -- 5.2 Subsea Power Cable Joints -- 5.2.1 Factory Joints -- 5.2.2 Offshore Installation Joints -- 5.2.2.1 Flexible Installation Joint -- 5.2.2.2 Rigid Installation Joint -- 5.2.2.3 Subsea Electric Cable Joint Box -- 5.2.2.4 Subsea Optical Cable Joint Box -- 5.2.3 Repair Joint -- 5.2.4 Defect Detection for XLPE Power Cable Joints -- 5.3 Subsea Power Cable Terminations -- 5.3.1 Onshore Cable Termination -- 5.3.2 Offshore Cable Terminations -- 5.4 Case Study -- References -- Chapter 6 Multi-Physics Analysis of Cable -- 6.1 Introduction -- 6.2 Multi-Physical Analysis -- 6.2.1 Theoretical Basis -- 6.2.2 Finite Element Analysis of Electromagnetic Characteristics -- 6.3 Study on Loss of Cable -- 6.4 Conclusions -- References -- Chapter 7 Design of Subsea Fiber Optic Cables -- 7.1 Plastic Optical Fiber (POF) -- 7.2 Glass Optical Fiber (GOF) -- 7.3 Fiber Bragg Grating (FBG) -- 7.3.1 Principles of FBG -- 7.3.2 FBG Applications on the Pipeline -- 7.4 Auxiliary Components for Optical Fibers -- 7.4.1 Interrogator -- 7.4.2 Optical Time Domain Reflectometer (OTDR). | |
7.5 Design and Manufacturing Procedures of Fiber Optic -- 7.6 Communication Cables -- 7.6.1 Static Analysis -- 7.6.2 Modal Analysis -- 7.6.3 Dynamic Analysis -- 7.6.4 Fatigue Analysis -- 7.7 Conclusions -- References -- Chapter 8 Manufacturing and Testing of Subsea Power Cables -- 8.1 Manufacturing -- 8.1.1 Conductor -- 8.1.2 XLPE Insulation -- 8.1.3 Sheathing -- 8.1.4 Lay-Up -- 8.1.5 Armoring -- 8.2 Testing -- 8.2.1 Development Tests -- 8.2.2 Type Tests -- 8.2.3 Mechanical Tests -- 8.2.4 Non-Electrical Tests -- References -- Chapter 9 Hydrodynamics -- 9.1 Introduction -- 9.2 Wave Theory -- 9.2.1 Linear Wave Theory -- 9.2.1.1 Regular Long-Crested Waves -- 9.2.1.2 Irregular Long-Crested Waves -- 9.2.2 Nonlinear Wave Theory -- 9.3 Steady Currents -- 9.4 Hydrodynamic Forces -- 9.4.1 Hydrodynamic Drag and Inertia Forces -- 9.4.1.1 Pipeline Exposed to Steady Fluid Flow -- 9.4.1.2 Pipeline Exposed to Accelerated Fluid Flow -- 9.4.1.3 The Complete Morisonfs Equation -- 9.4.1.4 Drag and Inertia Coefficient Parameter Dependency -- 9.4.2 Hydrodynamic Lift Forces -- 9.4.2.1 Lift Force Using Constant Lift Coefficients -- 9.4.2.2 Lift Force Using Variable Lift Coefficients -- References -- Part II: Global Analysis -- Chapter 10 Soil-Pipe Interaction -- 10.1 Introduction -- 10.1.1 Soil Types and Classification -- 10.1.2 Coefficients of Friction -- 10.1.3 Pipe-Soil Models -- 10.2 Pipe Penetration in Cohesive Soil -- 10.2.1 Introduction -- 10.2.2 Initial Penetration -- 10.2.2.1 Classical Bearing Capacity Method -- 10.2.2.2 Verley and Lund Method -- 10.2.2.3 Buoyancy Method -- 10.2.2.4 Murff et al. Method (1989) -- 10.2.2.5 Bruton et al. (2006) -- 10.2.3 Lay Effects -- 10.3 Pipe Penetration in Non-Cohesive Soils -- 10.3.1 Initial Penetration -- 10.3.1.1 Verley Method -- 10.3.1.2 Classical Bearing Capacity Method -- 10.3.2 Vertical Stability in Liquefied Soil. | |
10.4 Axial Load-Displacement Response of Pipelines -- 10.4.1 Cohesive Soil -- 10.4.2 Non-Cohesive Soil -- 10.5 Lateral Load-Displacement Response of Pipelines -- 10.5.1 Cohesive Soil -- 10.5.1.1 Classic Geotechnical Theories -- 10.5.1.2 Verley and Lund Method -- 10.5.1.3 Time-Dependent Resistance Method -- 10.5.1.4 Bruton et al. Method -- 10.5.2 Non-Cohesive Soil -- 10.5.3 eLightf and eHeavyf Pipes of Lateral Buckles -- 10.5.4 Soil Berms of Lateral Buckles -- References -- Chapter 11 On-Bottom Stability Analysis -- 11.1 Introduction -- 11.2 General Lateral Stability Method -- 11.3 Experimental Investigation -- 11.3.1 Experimental Arrangement -- 11.3.2 Test Sequence -- 11.3.3 Experiment Results -- 11.4 Numerical Analyses of Pipeline Stability with Abaqus -- 11.4.1 Pipeline Section Geometry -- 11.4.2 Modified Lateral Soil Resistance Model -- 11.4.3 Horizontal Force Due to Wave and Current -- 11.5 Case Study - Using Modified Resistance Model -- 11.5.1 Finite Element Model -- 11.5.2 Results and Comparison -- 11.6 Conclusions -- References -- Chapter 12 Pipelay Analysis -- 12.1 Introduction -- 12.2 Reel-Lay Method -- 12.3 Mathematical Model -- 12.4 Platform Motion and Raw Ocean Environmental Data -- 12.5 Mechanics Performance Test of Flexible Pipe -- 12.5.1 Tensile Test for Flexible Pipe -- 12.5.2 Bending Test for Flexible Pipe -- 12.6 Safety Assessment Procedure -- 12.6.1 Flexible Pipe Offshore Laying Scheme Design -- 12.6.2 Mechanics, Deformation, and Buckling Results -- 12.7 Conclusions -- References -- Part III: Mechanical Analysis -- Chapter 13 Reeling Operation of Flexible Pipelines -- 13.1 Introduction -- 13.2 Local Analysis -- 13.2.1 Geometrical and Material Characteristics -- 13.2.2 Tension Test -- 13.2.3 Bending Test -- 13.2.4 Summary -- 13.3 Global Analysis -- 13.3.1 Modeling -- 13.3.2 Interaction and Mesh. | |
13.3.3 Load and Boundary Conditions -- 13.3.4 Results and Discussions -- 13.4 Parametric Study -- 13.4.1 Diameter of the Coiling Drum -- 13.4.2 Sinking Distance of Coiling Drum -- 13.4.3 Reeling Length -- 13.4.4 Location of Bearing Plate -- 13.5 Conclusions -- References -- Chapter 14 Flexible Pipelines Subjected to Asymmetric Loads -- 14.1 Introduction -- 14.2 Cross-Section Design -- 14.2.1 General Design Requirements -- 14.2.2 Manufacturing Configuration and Material Qualification -- 14.2.3 Design Procedure -- 14.3 Case Study for a 6-Inch SSRTP -- 14.3.1 Internal Pressure -- 14.3.1.1 Theoretical Solution -- 14.3.1.2 FEM Verification -- 14.3.1.3 Summary -- 14.3.2 External Pressure -- 14.3.2.1 Theoretical Solution -- 14.3.2.2 FEM Verification -- 14.3.2.3 Summary -- 14.3.3 Axial Tension -- 14.3.3.1 Theoretical Solution -- 14.3.3.2 FEM Verification -- 14.3.3.3 Summary -- 14.4 SSRTP with Additional Tensile Amours -- 14.5 Conclusions -- References -- Chapter 15 Stress Concentration Effect on the Anti-Burst Capacity -- 15.1 Introduction -- 15.2 Theoretical Model -- 15.2.1 Material Properties Analysis -- 15.2.2 Strain-Stress Relations -- 15.3 Theoretical Model for Squeeze Pressure -- 15.4 Theoretical Model of Pipe Wall with Swaging End Fitting -- 15.5 Results and Discussion -- 15.6 Conclusions -- References -- Chapter 16 Compressive Buckling of Tensile Armours -- 16.1 Introduction -- 16.2 Equilibrium Differential Equations and Lateral Buckling Force -- 16.3 Results of Bflex -- 16.3.1 Bflex Model -- 16.3.2 Boundary Conditions -- 16.3.3 Load Conditions -- 16.3.4 Comparison with Theoretical Results -- 16.3.5 Buckling Force Selected from Blex Results -- 16.4 Parameters Analysis -- 16.4.1 Influence of Initial Imperfections -- 16.4.2 Influence of Effective Buckling Length of Tendon -- 16.4.3 Influence of Winding Radius of Tendon. | |
16.4.4 Influence of Layangle of Tendon. | |
Titolo autorizzato: | Flexible Pipelines and Power Cables |
ISBN: | 1-394-28753-4 |
1-394-28752-6 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910877093603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |