Vai al contenuto principale della pagina
| Titolo: |
2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD)
|
| Pubblicazione: | [Place of publication not identified], : IEEE, 2012 |
| Descrizione fisica: | 1 online resource (xii, 150 pages) : illustrations |
| Disciplina: | 620.00151 |
| Soggetto topico: | Engineering mathematics |
| Persona (resp. second.): | IEEE Staff |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Sommario/riassunto: | A geometric graph G is a graph whose vertices are points in the plane and whose edges are line segments weighted by the Euclidean distance between their endpoints. In this setting, a t-spanner of G is a connected spanning subgraph G' with the property that for every pair of vertices x, y, the shortest path from x to y in G' has weight at most L ≥ 1 times the shortest path from x to y in G. The parameter t is commonly referred to as the spanning ratio or the stretch factor. Among the many beautiful properties that Delaunay graphs possess, a constant spanning ratio is one of them. We provide a comprehensive overview of various results concerning the spanning ratio among other properties of different types of Delaunay graphs and their subgraphs. |
| Titolo autorizzato: | 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD) ![]() |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910873409403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |