Vai al contenuto principale della pagina
Autore: | Gervasi Osvaldo |
Titolo: | Computational Science and Its Applications - ICCSA 2024 : 24th International Conference, Hanoi, Vietnam, July 1-4, 2024, Proceedings, Part I |
Pubblicazione: | Cham : , : Springer International Publishing AG, , 2024 |
©2024 | |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (494 pages) |
Altri autori: | MurganteBeniamino GarauChiara TaniarDavid C. RochaAna Maria A Faginas LagoMaria Noelia |
Nota di contenuto: | Intro -- Preface -- Welcome Message from Organizers -- Organization -- Plenary Lectures -- Harnessing Artificial Intelligence for Enhanced Spatial Analysis of Natural Hazard Assessments -- Software Engineering Research in a New Situation -- Interpretability and Privacy Preservation in Large Language Models (LLMs) -- Contents - Part I -- Contents - Part II -- Computational Methods, Algorithms and Scientific Applications -- A Multi-centrality Heuristic for the Bandwidth Reduction Problem -- 1 Introduction -- 2 Problem Description and Mathematical Formulation -- 3 Relevant Related Work -- 4 Multi-centrality Heuristic Algorithm -- 4.1 Multi-centrality Constructive Algorithm -- 4.2 Selecting Centralities -- 5 Computational Experiments -- 5.1 Implementation Details and Parameters Tuning -- 5.2 MCH1 MCH2 MCH3 -- 5.3 Multi-centrality Heuristic Methods Published in the Literature -- 6 Conclusions and Future Works -- References -- Exact Algorithms for Weighted Rectangular Covering Problems -- 1 Introduction -- 2 Weighted Rectangular Covering Problem -- 2.1 Problem Definition -- 2.2 Porschen's Algorithm -- 2.3 Proposed Method -- 3 Weighted Line-Segment Covering Problem -- 3.1 Complexity Analysis -- 3.2 Exact Algorithm -- 4 Weighted Line-Segment Covering Problem with Unit-Length Line Segments -- 5 Conclusion -- References -- Clinical Factors to Investigate Survival Analysis in Cardiovascular Patients -- 1 Introduction -- 2 Materials and Methods -- 2.1 Study Design and Data Collection -- 2.2 Differential Sampling -- 2.3 Semi-parametric Cox Regression Model -- 2.4 Logistic Regression Model -- 3 Results and Discussion -- 3.1 Use of the Semi-parametric Cox Regression Model in Sample I -- 3.2 Use of Logistic Regression Model in Sample I -- 3.3 Experimental Procedure in Sample II -- 4 Conclusion -- References. |
A Study on Different Parameters Affecting Overall Cost of Global Content Distribution Services in Metropolitan Cloud Network -- 1 Introduction -- 2 Formulation of Cloud Network Flow Optimization -- 3 Cloud Augmented Graph and Service Graph Implementation -- 4 Professional Video on Demand (e.g.: Netflix) -- 5 Professional Live Video (e.g.: IPTV) -- 6 User Generated Video on Demand (e.g.: Facebook) -- 7 User Generated Live Video (e.g.: Facebook Live) -- 8 Overall Comparison for Network 2 & -- 2A -- 9 Conclusion -- References -- Fluid Simulation with Anisotropic Pressure Segregation and Time-Dependent Tensor Fields -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Navier-Stokes Equations with Tensor Fields -- 3.2 Anisotropic Helmholtz Projection and Varying Tensor Fields -- 3.3 Tensor X-IVAS: X-IVAS with Tensor-Based Pressure Segregation -- 3.4 Boundary Conditions -- 3.5 Implementation -- 4 Experiments with Time-Dependent Tensor Fields -- 4.1 Simulation with Axis-Aligned Planar Tensors -- 4.2 Simulation with the Strain-Rate Tensors -- 4.3 Discussion -- 5 Conclusion -- References -- Wave Source Localization Among Multiple Knife-Edges -- 1 Introduction -- 2 Problem Statement -- 3 Matched Field Processing -- 3.1 Adjoint Method Formulation -- 3.2 Bartlett MFP Processor -- 3.3 Minimum Variance -- 4 Multiple Knife-Edge Diffraction -- 5 Numerical Results and Discussion -- 5.1 Free Space -- 5.2 Source in Front of the Knife-Edge -- 5.3 Non Line of Sight -- 5.4 Two Knife-Edges -- 5.5 Horizontal Arrangement of Receivers -- 5.6 Multiple Knife-Edges -- 6 Conclusion -- References -- Image Segmentation Applied to Multi-species Phenotyping in Fish Farming -- 1 Introduction -- 2 Theoretical Foundation -- 2.1 Phenotyping -- 2.2 Reproductive Selection -- 2.3 Convolutional Neural Networks and the R-CNN Family of Methods -- 2.4 R-CNN -- 2.5 Fast R-CNN. | |
2.6 Faster R-CNN -- 2.7 Mask R-CNN -- 3 Development Methodology -- 4 Implementation -- 5 Results -- 5.1 Model Training -- 5.2 Phenotyping Piaractus mesopotamicus -- 5.3 Colossoma macropomum Phenotyping -- 6 Conclusion -- References -- Solving the Convection-Diffusion Equations via a Multiscale and Discontinuous Galerkin Approach -- 1 Introduction -- 2 Discontinuous Galerkin Formulation -- 3 Multiscale Framework -- 3.1 Nonlinear Process -- 4 Numerical Experiments -- 4.1 Example 1: Boundary Layers -- 4.2 Example 2: Boundary Layers -- 4.3 Example 3. Internal Layer -- 4.4 Example 4. Internal Layer -- 4.5 Convergence Rate -- 5 Conclusion -- References -- Iterated Local Search with Tabu Search for the Bandwidth Reduction Problem in Graphs -- 1 Introduction -- 2 Bandwidth Reduction -- 3 Related Works -- 4 Iterated Local Search with Tabu Search -- 5 Description of the Data and Tests -- 6 Results and Analysis -- 7 Conclusions -- References -- The Weighted Vector Finite Element Method for Vector Wave Equation with Singularity -- 1 Introduction -- 2 Notations and Problem Setting -- 3 Construction of the Weighted Vector Finite Element Method -- 4 Numerical Results -- 5 Conclusions -- References -- Geometric Modeling, Graphics and Visualization -- Enhancing Explainability in Oral Cancer Detection with Grad-CAM Visualizations -- 1 Introduction -- 2 Related Works -- 2.1 XAI for Medical Imaging -- 2.2 Comparisons Between XAI Methods -- 3 Experiments -- 3.1 Dataset -- 3.2 Models -- 3.3 Grad-CAM -- 4 Results -- 4.1 Accuracy by Class and Collection Location -- 4.2 Venn Diagram -- 4.3 Confidence Distribution -- 4.4 Visual Explanations -- 4.5 Data Preprocessing -- 5 Conclusion -- References -- Multi Modal Aware Transformer Network for Effective Daily Life Human Action Recognition -- 1 Introduction -- 2 Related Work -- 3 Proposed Architecture. | |
3.1 Spatial Self Attention Unit (SAU) -- 3.2 Temporal External Attention (TEA) Unit -- 3.3 Intermodal Attention-Based Feature Fusion Module (IAF) -- 4 Model Evaluation Procedure -- 4.1 Implementation Details -- 4.2 Comparison of Proposed Methodology and State of the Art Approaches on NTU- RGB+D Dataset -- 4.3 Ablation Study -- 5 Conclusion -- References -- Enhancing Image Registration Leveraging SURF with Alpha Trimmed Spatial Relation Correspondence -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Methodology -- 4 Experimental and Comparison Results -- 4.1 Experimental Results -- 4.2 Comparative Results -- 5 Conclusion and Future Work -- References -- Tomato Disease Detection from Tomato Leaf Images Using CNN-Based Feature Extraction, Feature Selection with Whale Optimization Algorithm, and SVM Classifier -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Dataset and Preprocessing -- 3.2 The CNN-Based Feature Extractor -- 3.3 Feature Selection with Whale Optimization Algorithm -- 3.4 The SVM Classifier -- 4 Experiments and Results -- 4.1 Experimental Setting -- 4.2 Performance of the Base CNN for Tomato Disease Detection -- 4.3 Tomato Disease Detection Performance of SVM Classifier with FSWOA -- 4.4 Comparative Discussion -- 5 Conclusion -- References -- Advanced and Emerging Applications -- Trajectories in Rutherford Dispersion According to Lagrangian Dynamics -- 1 Introduction -- 1.1 Rutherford's Dispersion Challenge: Beyond Newton's Law -- 1.2 Fundamentals and Objectives of Lagrangian Analysis in Particle Scattering -- 1.3 Principles of Lagrangian Dynamics -- 1.4 Historical Comparison: Newton's Law Versus Lagrange's Formalism -- 2 Methodology -- 2.1 Elaboration of the Lagrangian Model for Rutherford Scattering -- 2.2 Differential Equations in Particle Dynamics. | |
2.3 Analysis of Initial Conditions and Physical Variables Involved -- 2.4 Derivation of the Lagrangian Differential Equation -- 2.5 Transformations and Solutions of the Equation of Motion -- 2.6 Physical Implications of the Lagrangian Solution -- 3 Results -- 3.1 Comparison of Trajectories: Newtonian Approach vs. Lagrangian -- 3.2 Physical Interpretation of the Lagrangian Solution -- 4 Discussion -- 4.1 Critical Analysis of the Applicability of Lagrange Formalism in Dispersion -- 4.2 Advantages and Limitations of the Lagrangian Approach -- 5 Conclusions and Recommendations -- 5.1 Synthesis of Findings and Contributions to the Field of Particle Physics -- 5.2 Recommendations for Future Research and Practical Applications -- References -- Is There a Space in Landslide Susceptibility Modelling: A Case Study of Valtellina Valley, Northern Italy -- 1 Introduction -- 2 Literature Review -- 2.1 Landslide Susceptibility Modelling Approaches -- 2.2 Factors Influencing Landslide Susceptibility -- 3 Study Design -- 3.1 Research Questions -- 3.2 Research Methodology -- 3.3 Global Logistic Regression (GLR) -- 3.4 Geographically Weighted Logistic Regression (GWLR) -- 4 Study Area and Data Overview -- 4.1 Study Area -- 4.2 Data Acquisition and Processing -- 4.3 Landslide Data Sampling -- 4.4 Complete and Quasi-Complete Separation -- 4.5 Landslide Susceptibility Factors Selection and Preparation -- 4.6 Curse of Multicollinearity -- 4.7 Stepwise Selection of Significant Landslide Factors -- 5 Results -- 5.1 Model Evaluation and Validation -- 6 Discussion -- 7 Conclusion -- References -- Study of Relationships Between Time Series by Co-spectral Analysis -- 1 Introduction -- 2 Time Series Analysis and Fourier Series Transformation -- 2.1 Verification of Stationarity of Time Series -- 2.2 Correlograms and Spectrograms -- 3 Cross-Correlation and Co-spectral Analysis. | |
4 Application of the Proposed Technique to Financial Series Case. | |
Titolo autorizzato: | Computational Science and Its Applications - ICCSA 2024 |
ISBN: | 3-031-64605-3 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910869184603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |