Vai al contenuto principale della pagina

MXene Reinforced Polymer Composites : Fabrication, Characterization and Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Deshmukh Kalim Visualizza persona
Titolo: MXene Reinforced Polymer Composites : Fabrication, Characterization and Applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (569 pages)
Altri autori: PandeyMayank  
HussainChaudhery Mustansar  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Two-Dimensional MXenes: Fundamentals, Characteristics, Synthesis Methods, Processing, Compositions, Structure, and Applications -- 1.1 Introduction -- 1.2 Fundamentals -- 1.2.1 Crystallographic Structure -- 1.2.2 Electronic Structure -- 1.2.3 Magnetic Structure -- 1.3 General Characteristics of the MXenes -- 1.3.1 Physical Properties -- 1.3.2 Chemical Properties -- 1.4 Synthesis Methods -- 1.4.1 Wet Chemical Etching -- 1.4.2 Urea Glass Route -- 1.4.3 Chemical Vapor Deposition -- 1.4.4 Molten Salt Etching -- 1.4.5 Hydrothermal Synthesis -- 1.4.6 Electrochemical Synthesis at Room Temperature -- 1.5 Applications -- 1.5.1 Nitrogen Reduction Reaction (NRR) -- 1.5.2 Oxygen Evolution Reaction (OER)/Oxygen Reduction Reaction (ORR) -- 1.5.3 Hydrogen Evolution Reaction (HER) -- 1.5.4 Energy Storages -- 1.5.4.1 Battery -- 1.5.4.2 Supercapacitor -- 1.5.4.3 Electromagnetic Interference Shielding -- 1.5.5 Biomedical Applications -- 1.6 Conclusion and Future Scope -- Acknowledgement -- References -- Chapter 2 Chemical Exfoliation and Delamination Methods of MXenes -- 2.1 Introduction -- 2.2 HF Etching Method -- 2.3 In Situ HF-Forming Etching Method -- 2.3.1 Fluoride Salts/Acids Etching Method -- 2.3.2 Bifluoride Salts Etching Method -- 2.4 Molten Salt Etching Method -- 2.4.1 Fluorine-Containing Molten Salt Etching Route -- 2.4.2 Fluorine-Free Molten Salt Etching Route -- 2.5 Electrochemical Etching Method -- 2.6 Hydrothermal Etching Method -- 2.7 Alkali Etching Method -- 2.8 Other Etching Methods -- 2.9 Exfoliation Strategies of Multilayered MXene -- 2.10 Conclusion -- Acknowledgement -- References -- Chapter 3 Surface Terminations and Surface Functionalization Strategies of MXenes -- 3.1 Introduction -- 3.2 Surface Termination Strategies in MXenes -- 3.2.1 Hydrofluoric Acid-Based Etching.
3.2.2 Molten Salt Etching -- 3.2.3 Alkali-Based Etching -- 3.2.4 Electrochemically-Assisted Etching -- 3.2.5 Manipulation of Terminations: Surface Modification and Doping in MXenes -- 3.3 Methods of Surface Functionalization in MXenes -- 3.3.1 Controlling Surface Terminations -- 3.3.2 Single Heteroatom Method -- 3.3.3 Small Molecules -- 3.3.4 Surface-Initiated Polymerization -- 3.3.5 Other Methods -- 3.4 Application of Surface Modified MXenes -- 3.4.1 Energy Generation and Storage -- 3.4.2 Biomedicine -- 3.4.2.1 Biosensing and Bioimaging -- 3.4.2.2 Photothermal Therapy -- 3.4.2.3 Drug Delivery -- 3.4.2.4 Antibacterial Activity -- 3.4.3 Catalysis -- 3.4.3.1 CO Oxidation -- 3.4.3.2 Activation and Conversion of CO2 -- 3.4.3.3 Water-Gas Shift (WGS) -- 3.4.4 Other Applications of Surface Modified MXenes -- 3.4.4.1 Sensors -- 3.4.4.2 Membrane-Based Separation -- 3.5 Conclusion and Future Perspectives -- References -- Chapter 4 Electronic, Electrical and Optical Properties of MXenes -- 4.1 Introduction -- 4.2 Structure of MXenes -- 4.3 An Overview of Various Methods of Synthesis of MXenes -- 4.3.1 Aqueous Acid Etching (AAE) Method -- 4.3.2 Chemical Vapor Deposition (CVD) Method -- 4.4 Electronic Properties -- 4.4.1 Density of States and Electronic Distribution -- 4.4.2 Band Structure and Bandgap Estimation -- 4.4.3 Methods to Enhance Electronic Properties -- 4.5 Electrical Properties -- 4.5.1 MXene Structure and Composition -- 4.5.2 Electrical Conductivity -- 4.5.3 Surface Functionalization -- 4.5.4 Methods to Enhance Electrical Properties -- 4.6 Optical Properties -- 4.6.1 Photoluminescence Response -- 4.6.2 Absorption Properties -- 4.6.3 Dielectric Properties -- 4.6.4 Non-Linear Optical Properties -- 4.6.5 Plasmonic Properties -- 4.6.6 Methods to Improve the Optical Properties -- 4.7 Conclusion -- References.
Chapter 5 Magnetic, Mechanical and Thermal Properties of MXenes -- 5.1 Introduction -- 5.1.1 Applications of MXenes -- 5.1.2 Structure of MXenes -- 5.2 Magnetic Characteristics of MXenes -- 5.3 Mechanical Characteristics of MXenes -- 5.4 Thermal Characteristics of MXenes -- 5.5 Conclusion -- References -- Chapter 6 MXene-Reinforced Polymer Composites: Fabrication Methods, Processing, Properties and Applications -- 6.1 Introduction -- 6.2 Fabrication Methods and Processing -- 6.2.1 Direct Physical Mixing -- 6.2.2 Surface Modification -- 6.2.3 In Situ Polymerization -- 6.2.4 Others -- 6.3 Properties -- 6.3.1 Electrical Properties -- 6.3.2 Thermal Properties -- 6.3.3 Mechanical Properties -- 6.3.4 Photo Thermal Properties -- 6.3.5 Flame Retardant Properties -- 6.3.6 Others -- 6.4 Applications -- 6.4.1 Sensors -- 6.4.2 Energy Applications -- 6.4.3 Electromagnetic Interference Shielding -- 6.4.4 Catalytically Conversion -- 6.4.5 Oil/Water Separation -- 6.4.6 Others -- 6.5 Conclusion and Outlook -- Acknowledgment -- References -- Chapter 7 Structural, Morphological and Tribological Properties of Polymer/MXene Composites -- Abbreviations -- 7.1 Introduction -- 7.2 Overview of MXene -- 7.3 MXene/Polymer Nanocomposites -- 7.4 MXene/Polymer Nanocomposite Fabrication Methods -- 7.4.1 Solution Mixing -- 7.4.2 In Situ Polymerization Blending -- 7.4.3 Hot Press -- 7.4.4 Other Methods -- 7.5 Characteristics of Polymer/MXene Composites -- 7.5.1 Structural Properties -- 7.5.2 Tri-Biological Properties -- 7.5.3 Morphological Properties -- 7.5.4 Interfacial Strength -- 7.5.5 Other Properties -- 7.6 Novel Applications of Polymer/MXene Composites -- 7.7 Conclusion and Outlook -- References -- Chapter 8 MXene-Reinforced Polymer Composites for Dielectric Applications -- 8.1 Introduction -- 8.2 Synthesis of MXene -- 8.2.1 Etching of MAX Phases.
8.2.2 Modified Acid Etching Methods of MAX Phases -- 8.2.3 Fluoride Salts as Etchants -- 8.2.4 Fluoride-Free Synthesis Methods -- 8.3 Modification Strategies of MXene -- 8.3.1 Covalent Interaction -- 8.3.2 Non-Covalent Interaction -- 8.4 Synthesis Methods and Fabrication of MXene-Based Polymer Composites -- 8.4.1 Ex Situ Mixing -- 8.4.2 In Situ Mixing -- 8.4.3 Fabrication Techniques -- 8.4.3.1 Drop Casting -- 8.4.3.2 Vacuum-Assisted Filtration (VAF) -- 8.4.3.3 Hot Press (HP) -- 8.5 Properties of MXene/Polymer Composite -- 8.5.1 Electronic and Dielectric Property -- 8.5.2 Dielectric Constant -- 8.5.3 Dielectric Loss -- 8.5.4 Breakdown Strength -- 8.5.5 AC Electrical Conductivity -- 8.6 Dielectric Applications of MXene/Polymer Composite Materials -- 8.7 Conclusion -- References -- Chapter 9 MXenes-Reinforced Polymer Composites for Microwave Absorption and Electromagnetic Interference Shielding Applications -- 9.1 Introduction to MXenes -- 9.1.1 Structure and Properties -- 9.1.2 Applications -- 9.2 Materials for EMI Shielding and Microwave Absorption -- 9.3 MXenes-Based Materials for EMI Shielding and Microwave Absorption -- 9.3.1 MXenes -- 9.3.2 MXenes/Carbon Composites -- 9.3.3 MXenes/Magnetic Materials -- 9.3.4 MXenes/Polymer Composites -- 9.3.5 Hybrid Combinations -- 9.4 EMI Shielding Mechanisms for MXene-Based Materials -- 9.5 MXenes/Polymer Composites for EMI Shielding and Microwave Absorption -- 9.6 Electrospun Fibers with MXenes as Additives -- 9.7 Conclusions and Future Outlook -- References -- Chapter 10 Polymer/MXene Composites for Supercapacitor and Electrochemical Double Layer Capacitor Applications -- 10.1 Introduction -- 10.2 MXene-Polymer Composites -- 10.2.1 Classification -- 10.2.2 Preparation Methods -- 10.2.2.1 Ex Situ Blending (Solvent Processing) -- 10.2.2.2 In Situ Polymerization -- 10.2.2.3 Other Preparation Methods.
10.2.3 Properties -- 10.2.3.1 Electrical Properties -- 10.2.3.2 Thermal Properties -- 10.2.3.3 Mechanical Properties -- 10.3 Applications of MXene Polymer Composites for Supercapacitor Applications -- 10.3.1 Introduction to Supercapacitor and Its Classification -- 10.3.2 Classification of Supercapacitor -- 10.3.3 Recent Advancements and Achievements in Various MXene-Polymer Composites for Supercapacitor Applications -- 10.4 Challenges and Future Perspectives -- 10.5 Conclusion -- References -- Chapter 11 MXene-Based Polymer Composites for Hazardous Gas and Volatile Organic Compound Detection -- 11.1 Introduction -- 11.2 Synthesis of MXenes and MXene-Polymer Composites -- 11.2.1 Synthesis of MXenes -- 11.2.2 Synthesis of MXene-Based Composites -- 11.2.3 MXene-Polymer Composites -- 11.3 Properties of MXenes and MXene-Polymer Composites -- 11.3.1 Mechanical Properties -- 11.3.2 Electronic Properties -- 11.3.3 Magnetic Properties -- 11.4 Mxene-Polymer Composites Applications -- 11.4.1 Detection of VOCs and Hazardous Gases -- 11.4.2 Environment-Related Applications -- 11.4.2.1 Catalysis -- 11.4.2.2 Electrocatalysis -- 11.4.2.3 Photocatalysis -- 11.4.3 Water Remediation -- 11.5 Future Directions -- 11.5.1 Bioimaging -- 11.5.1.1 Magnetic Resonance Imaging (MRI) -- 11.5.1.2 Photoacoustic (PA) Imaging -- 11.5.2 Computed Tomography (CT) -- 11.5.3 Bone Regeneration -- 11.6 Conclusion -- Acknowledgement -- References -- Chapter 12 MXene-Reinforced Polymer Composites as Flexible Wearable Sensors -- 12.1 Introduction -- 12.2 Performance Parameter for Flexible Pressure and Strain Sensor -- 12.2.1 Sensitivity -- 12.2.2 Stretchability -- 12.2.3 Hysteresis -- 12.2.4 Durability and Range -- 12.3 Design of MXenes/Polymer Composites as Flexible Pressure Sensors -- 12.4 Design of MXenes/Polymer Composites as Flexible Strain Sensors.
12.5 Design of MXenes/Biopolymer Composites as a Flexible Pressure Sensor.
Titolo autorizzato: MXene Reinforced Polymer Composites  Visualizza cluster
ISBN: 1-119-90127-8
1-119-90126-X
1-119-90128-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910840710503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui