Vai al contenuto principale della pagina

Industrial Control Systems



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Pal Vipin Chandra
Titolo: Industrial Control Systems
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (336 pages)
Altri autori: TripathiSuman Lata  
GanguliSouvik  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Part 1 Advanced Control Techniques -- Chapter 1 Introduction: Industrial Control System -- 1.1 Types of Industry -- 1.1.1 The Primary Sector -- 1.1.2 The Secondary Sector -- 1.1.3 The Tertiary Sector -- 1.2 Historical Perspective in Terms of Control -- 1.2.1 First Industrial Revolution -- 1.2.2 Second Industrial Revolution -- 1.2.3 Third Industrial Revolution -- 1.2.4 Fourth Industrial Revolution -- 1.3 Future of Industry -- 1.3.1 Edge Computing -- 1.3.2 Additive Manufacturing -- 1.3.3 5G -- 1.3.4 Artificial Intelligence -- 1.3.5 Cybersecurity -- References -- Chapter 2 Industrial Boiler Safety Monitoring System -- 2.1 Introduction -- 2.2 Boiler Definition -- 2.2.1 Steam-Raising Plant and Boilers -- 2.2.2 Factors Affecting Safe Operation of Boilers -- 2.2.3 Need for Boiler -- 2.2.4 Applications of Boiler -- 2.2.5 Useful Terms -- 2.3 Classification of Boiler -- 2.3.1 Types of Fuels Used in Boilers -- 2.4 Proposed System -- 2.4.1 Transmitter Section -- 2.4.2 Receiver Section -- 2.5 Hardware Components -- 2.5.1 ATMEGA 328 Controller -- 2.5.1.1 Features of ATmega 328/P Microcontroller -- 2.5.2 Thermocouples -- 2.5.2.1 Construction -- 2.5.2.2 Factors Impacting Accuracy of Thermocouple Readings -- 2.5.2.3 Thermocouple Characteristics -- 2.5.2.4 Industrial Thermocouples -- 2.5.3 Pressure Sensors -- 2.5.3.1 Monitoring Process Flows -- 2.5.3.2 Estimating Safe Levels in Liquid Tanks -- 2.5.3.3 Managing Control Loops -- 2.6 Conclusion and Future Scope -- References -- Chapter 3 Robust Control of Industrial Rotary System -- 3.1 Introduction -- 3.2 Controller Design -- 3.2.1 Finite Dimentional Robust Repetitive Controller Using a Multiloop Approach -- 3.3 Problem Formulation -- 3.4 LMI Formulation for Robust Stabilization Criteria -- 3.5 Plant Model -- 3.6 Simulation Study.
3.7 Processor in Loop (PIL) Simulation -- 3.8 Conclusion -- References -- Chapter 4 Proctored Secure Face Lock System -- 4.1 Introduction -- 4.1.1 The Need for Technology -- 4.2 Background -- 4.3 Proctored Secure Face Lock System -- 4.3.1 Methodology -- 4.3.2 Hardware Requirements -- 4.3.2.1 Overview of Raspberry Pi Version 3B+ Module -- 4.3.2.2 Overview of PI Camera -- 4.3.2.3 PIR Sensor Overview -- 4.3.2.4 Applications of the Components -- 4.3.3 Power Supply -- 4.3.3.1 Transformer -- 4.3.3.2 Rectifier -- 4.3.3.3 Filter -- 4.4 Implementation of Proctored Face Lock System Using Python -- 4.5 Analysis and Discussion -- 4.6 Conclusion and Future Work -- References -- Chapter 5 Advanced Adaptive Control of Nonlinear Plants -- 5.1 Introduction -- 5.2 Model Reference Adaptive Control -- 5.3 Dynamic Inversion -- 5.4 U-Model -- 5.5 Single Inverted Pendulum -- 5.6 Performance Analysis -- 5.6.1 MRAC Employing MIT Rule -- 5.6.2 MRAC Employing LYAPUNOV Stability Method -- 5.6.3 MRAC Augmented with PID Method -- 5.6.4 Dynamic Inversion -- 5.6.5 U-Model Design Technique -- 5.6.5.1 Pole Placement Based Controller -- 5.6.5.2 U-Model Based Pole Placement -- 5.6.5.3 U-Model Based MRAC Technique with MIT Rule -- 5.7 Conclusion -- References -- Chapter 6 Design and Performance Analysis of Multiobjective Optimization Using PSO and SVM for PSS Tuning in SMIB System -- 6.1 Introduction -- 6.2 Small Signal Stability Analysis of SMIB System -- 6.3 Real Time Simulation of SMIB -- 6.3.1 dSPACE Simulated Flux Linkage Model of Synchronous Generator -- 6.3.2 dSPACE Simulation of Synchronous Generator's State Space Model (SSP) -- 6.4 Application of Optimization Techniques -- 6.4.1 Particle Swarm Optimization -- 6.4.2 Support Vector Machine Algorithm -- 6.5 Real-Time Simulation of Single Machine System Using PSO-PSS -- 6.6 Conclusion -- References.
Chapter 7 Modelling and Control of PMSM Drives -- 7.1 Introduction -- 7.2 A Proposed Technique for Modelling and Control -- 7.3 Results and Discussions -- 7.4 Conclusions -- References -- Chapter 8 VI System for Power Management of DC Microgrid -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Proposed System -- 8.3.1 Microgrid Architecture -- 8.3.2 Microgrid Hardware -- 8.4 Microgrid Power Management and Metering Software -- 8.5 Experimental Work and Results -- 8.6 Conclusion -- References -- Part 2 Control Strategies for Practical Systems -- Chapter 9 Execution of a Portable Fuzzy Controller for Speed Regulator Brushless DC Motors -- 9.1 Introduction -- 9.2 Related Works -- 9.3 Materials and Methods -- 9.3.1 Scientific Model for BLDC Motor -- 9.3.2 Inverter Topology for BLDC Motor -- 9.3.2.1 Adaptive Fuzzy Optimal Power Control (AFOPC) Based Speed Control of BLDCM -- 9.3.2.2 Adaptive Fuzzy Optimal Power Control (AFOPC) -- 9.4 Result and Argument -- 9.5 Conclusions -- References -- Chapter 10 Fuzzy Fractional Order PID Controller Design for Single Link Robotic Arm Manipulator -- 10.1 Introduction -- 10.2 Fuzzy Logic Control -- 10.2.1 Mamdani Type Fuzzy System -- 10.3 Fractional Order Proportional Integral Derivative (FOPID) Controller -- 10.3.1 Introduction to Fractional-Order Calculus -- 10.3.1.1 Fractional-Order Differintegral Operator -- 10.3.1.2 Laplace Transform of Fractional Differintegrator -- 10.3.1.3 Approximation Methods of Fractional-Order Laplace Transform -- 10.3.2 Fractional-Order PID Controller-FOPID -- 10.3.2.1 Podlubny's FOPID (PIë Dì) Controller -- 10.3.2.2 Internal Mode Control (IMC) Based FOPID Controller -- 10.3.2.3 Effects of Fractional-Orders in Controller Performance -- 10.4 Modelling of Robotic Manipulator -- 10.4.1 Modelling of Single-Link Manipulator -- 10.4.2 Modelling of Dynamics of Servo Motor.
10.4.3 Modelling of Manipulator Dynamics -- 10.5 Proposed Design of Fuzzy Fractional-Order PID Controller -- 10.5.1 Implementation of Fuzzy Logic for Gain Scheduling of FOPID -- 10.5.2 Structure of the Proposed Fuzzy Inference System -- 10.5.2.1 Inputs -- 10.5.2.2 Outputs -- 10.5.2.3 Rule-Base -- 10.5.2.4 Inference and Defuzzification Technique -- 10.5.3 Proposed Controller Structure -- 10.6 Simulation Study of Proposed FFOPID Controller -- 10.6.1 Analysis of Step Response -- 10.7 Conclusion -- References -- Chapter 11 Prototype Development of an Electromagnetic Levitation System for Maglev Vehicle -- 11.1 Introduction -- 11.1.1 Maglev Transportation -- 11.2 System Modelling and Fabrication -- 11.3 Feedback Sensing, Experimental Results, and Discussions -- 11.4 Conclusions -- References -- Chapter 12 Design of SSA Tuned Cascaded TI-TID Controller for Load Frequency Control of Multi-Source Power System with Electric Vehicle -- 12.1 Introduction -- 12.2 Modelling of Studied MSIPS -- 12.3 Modelling of EV -- 12.4 Adopted Control Approach -- 12.4.1 PID Controller -- 12.4.2 Cascade Controller -- 12.4.3 CPI-TD Controller -- 12.4.4 Design of CTI-TID Controller -- 12.4.5 Formulated Fitness Function and Optimization Constraint -- 12.5 Description of SSA -- 12.6 Simulation Results and Analysis -- 12.6.1 Scenario 1: Performance Investigation of Studied Two-Area MSIPS Model -- 12.6.2 Scenario 2: Performance Investigation of Studied Two-Area MSIPS Model with EVs -- 12.6.3 Scenario 3: Sensitivity Analysis -- 12.7 Conclusion -- References -- Appendix -- Chapter 13 Cyber Security Control Systems for Operational Technology -- 13.1 Introduction -- 13.2 Operational Technology Security Risk -- 13.2.1 Today's Security of Industrial Networks -- 13.2.2 User Activity Monitoring -- 13.2.3 Hazard in Reputed Industries -- 13.2.4 Dynamic Security Battle Space.
13.3 Taxonomy of Security Vulnerabilities -- 13.3.1 Buffer Overflow -- 13.3.2 Non-Substantial Input -- 13.3.3 Race Conditions -- 13.3.4 Lack of Security Practices -- 13.3.5 Access Control Problems -- 13.3.6 Malicious Software -- 13.3.7 Spyware -- 13.3.8 Program in Adware -- 13.3.9 Bot -- 13.3.10 Ransomware -- 13.3.11 Scareware -- 13.3.12 Rootkit -- 13.3.13 Virus -- 13.3.14 Trojan Horse -- 13.3.15 Worms -- 13.3.16 Man-In-The-Middle [MitM] -- 13.3.17 Blended Attacks -- 13.4 Methodology -- 13.4.1 Stronger Operational Technology [OT] Security -- 13.4.2 Creating Inventory and Identifying OT Vulnerabilities -- 13.4.3 Acquiring Automated Threat Intelligence Feeds -- 13.4.4 Back/Restore -- 13.5 Style of Cyber Security -- 13.5.1 Security Automation -- 13.5.2 Breach Detection System (BDS) -- 13.5.3 Protection of Computing Devices From Intrusion -- 13.5.3.1 Keep the Firewall on Condition -- 13.5.3.2 Antivirus and Antispyware -- 13.5.3.3 Manage Your Operating System and Browser -- 13.5.3.4 Protection of Smart Devices -- 13.5.3.5 Unique Passwords for Each Online Account -- 13.5.3.6 Detecting Attacks in Real Time -- 13.5.3.7 Cyber Attacks in Operational Technology -- 13.6 Avoidance of Threads in Operational Technology -- 13.6.1 [DDoS] Distributed Denial of Services Attacks and Response -- 13.6.2 Protecting Against Malware in Operational Technology -- 13.7 Conclusion -- References -- About the Editors -- Index -- EULA.
ISBN: 1-119-82943-7
1-119-82942-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910835069503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui