Vai al contenuto principale della pagina
Titolo: | Smart stimuli-responsive polymers, films, and gels / / edited by Liang Hu, Yongfeng Gao, and Michael J. Serpe |
Pubblicazione: | Weinheim, Germany : , : Wiley-VCH, , [2022] |
©2022 | |
Descrizione fisica: | 1 online resource (402 pages) |
Disciplina: | 620.192 |
Soggetto topico: | Polymers - Thermomechanical properties |
Stimulants - Physiological effect | |
Microgels | |
Persona (resp. second.): | HuLiang |
GaoYongfeng | |
SerpeMichael J. | |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 From Mechanochemistry to Mechanoresponsive Materials -- 1.1 Introduction -- 1.2 Mechanochemistry in Biological Systems -- 1.2.1 A Stressful Environment During Heart Development -- 1.2.2 Protein Unfolding by Force -- 1.2.3 Stress Mitigation by Tissue -- 1.2.4 Sensing by Ion Channel Opening -- 1.3 Mechanistic View of Mechanochemistry -- 1.4 Polymer Covalent Mechanochemistry -- 1.4.1 Pyran‐Based Mechanochromophores -- 1.4.2 Retro‐Cycloadditions -- 1.4.3 Ladderenes -- 1.4.4 Stable Radical Systems -- 1.4.5 Other Types of Mechanophores -- 1.5 Polymer Noncovalent Mechanochemistry -- 1.5.1 Mechanoresponses of Metal-Ligand Bonds -- 1.5.2 Mechanochemistry of Other Noncovalent Interactions and Their Applications in Functional Polymers -- 1.6 Conclusions -- References -- Chapter 2 Photoresponsive Polymers -- 2.1 Introduction -- 2.2 Photoresponsive Polymers -- 2.2.1 Photoluminescent Polymers -- 2.2.1.1 Fluorescent Polymers -- 2.2.1.2 Phosphorescent Polymers -- 2.2.2 Photochromic Polymers -- 2.2.3 Photocleavable Polymers -- 2.2.4 Photodimerizable Polymers -- 2.2.5 Photoadaptable Polymers -- 2.3 Applications of Photoresponsive Polymers -- 2.3.1 Smart Polymeric Inks -- 2.3.2 Polymer Sensors -- 2.3.3 Photolithography -- 2.3.4 Surface Active Agents -- 2.3.5 Photorheological Polymers -- 2.3.6 Self‐Healing Polymers -- 2.3.7 Shape‐Changing Polymers -- 2.3.8 Photoconductive Polymers -- 2.3.9 Drug Delivery -- 2.3.10 Membranes, Films, and Textiles -- 2.4 Summary and the Future -- 2.4.1 Water Contact Angle Variation -- 2.4.2 Viscosity Variation -- 2.4.3 Color Change and Emission -- 2.4.4 Sol-Gel Transition -- References -- Chapter 3 Polymer Systems for Ionizing Radiation Dosimetry and Radiotherapy -- 3.1 Introduction -- 3.2 Interaction of Radiation with Matter -- 3.2.1 α‐Particles -- 3.2.2 Electrons. |
3.2.3 Photons -- 3.3 Polymer Systems for Ionizing Radiation Dosimetry -- 3.3.1 Polymer‐Based Dosimeters -- 3.3.2 Polymer/Dye Dosimeters -- 3.3.3 Fluorescent Polymer Dosimeters -- 3.3.4 Polymer/Metal Nanomaterials Dosimeters -- 3.4 Ionizing Radiation‐Responsive Polymer Systems for Therapy -- 3.5 Conclusion -- Acknowledgments -- References -- Chapter 4 Shrink and Wrinkle - Thermally Responsive Substrates for Thin‐Film Structuring -- 4.1 Structured Thin Films -- 4.2 Measuring the Mechanical Properties of Thin Films Using Thermal Wrinkling -- 4.2.1 Thermally Structured Thin Films for Cell Culture -- 4.2.2 Wrinkled Conductive Thin Films for Wearable Electronics -- 4.2.3 Wrinkled Electrochemical Sensors -- 4.2.4 Current Challenges and Future Perspectives for the Use of Wrinkled Thin Films -- References -- Chapter 5 Design of Nanocomposite Microgels Prepared by Seeded Emulsion Polymerization in the Presence of Microgels -- 5.1 Background on Composite Hydrogels -- 5.2 Background on Composite Microgels -- 5.3 Conventional Emulsion Polymerization and SEP -- 5.4 Nanocomposite Microgels Prepared by SEP in the Presence of Microgels -- 5.5 Design of the Internal Structure of the Nanocomposite Microgels -- 5.6 Synthesis of Multi‐layered Nanocomposite Microgels -- 5.7 Characterization of Nanocomposite Microgels -- 5.8 Applications of Nanocomposite Microgels -- 5.9 Summary and Perspective -- References -- Chapter 6 Compressible Microgels in Concentrated Suspensions: Phase Behavior, Flow Properties, and Scattering Techniques to Probe Their Structure and Dynamics -- 6.1 Introduction -- 6.2 Swelling Thermodynamics -- 6.2.1 Polymer/Solvent Mixing -- 6.2.2 Elasticity -- 6.2.3 Ionic Effects -- 6.2.4 Equation of State -- 6.3 Experimental Techniques -- 6.3.1 Dynamic Light Scattering -- 6.3.1.1 Auto‐correlation Experiments -- 6.3.1.2 Cross‐correlation and 3D‐DLS Experiments. | |
6.3.2 Small‐angle Neutron‐scattering -- 6.3.2.1 SANS Setup -- 6.3.2.2 Scattering Theory -- 6.3.2.3 Form Factor and Structure Factor -- 6.3.2.4 Contrast Variation -- 6.4 Suspension Phase Behavior -- 6.5 Flow Properties -- 6.6 Final Remarks -- References -- Chapter 7 Structure and Properties of Smart Micro‐ and Nanogels Determined by (Neutron) Scattering Methods -- 7.1 Introduction -- 7.2 Scattering Techniques Applied to Microgels -- 7.2.1 Static and Dynamic Light Scattering Applied to Microgels -- 7.2.1.1 Static Light Scattering (SLS) -- 7.2.2 Dynamic Light Scattering (DLS/PCS) -- 7.2.3 Small‐Angle Neutron and X‐Ray Scattering Applied to Microgels -- 7.3 Multicompartment and Multi‐Stimuli‐Responsive Microgels -- 7.4 Time‐Resolved Small‐Angle Scattering -- 7.5 Crowded Microgel Systems -- 7.6 Conclusion and Outlook -- Appendix: Absolute Intensity for Fuzzy Sphere Form Factors -- References -- Chapter 8 Stimuli‐Responsive Fluorescent Polymeric Hydrogels -- 8.1 Introduction -- 8.2 Strategies for Preparing Fluorescent Polymeric Hydrogels (FPHs) -- 8.2.1 Physically Incorporating Fluorogens into Polymeric Hydrogels -- 8.2.2 Covalently Bonding Fluorogens into Polymeric Hydrogels -- 8.2.3 Supramolecular Polymerizing/Crosslinking Monomeric Fluorogens -- 8.2.4 Comparison of Different Synthetic Strategies -- 8.3 Promising Applications -- 8.3.1 Optical Sensing and Bio‐imaging -- 8.3.2 Information Encoding and Encryption -- 8.3.3 Bioinspired Mechanosensing Systems and Soft Actuators/Robotics -- 8.4 Conclusions -- References -- Chapter 9 The Fabrication and Applications of Bioinspired Hydrogel Actuators -- 9.1 Introduction -- 9.2 The Classification of Hydrogel Actuators -- 9.2.1 Addition of Active Ingredient -- 9.2.2 Pneumatic/Hydraulic Actuators -- 9.2.3 Stimuli‐Responsive Hydrogel Actuator Derived from Asymmetric Swelling. | |
9.2.3.1 Single‐Stimulus‐Responsive Hydrogel Actuators -- 9.2.3.2 Multi‐stimuli‐Responsive Hydrogel Actuators -- 9.3 Anisotropic Structures -- 9.3.1 1D/2D Anisotropic Structures -- 9.3.1.1 Bilayer -- 9.3.1.2 Oriented -- 9.3.1.3 Gradient -- 9.3.1.4 Patterned -- 9.3.2 3D Anisotropic Structures -- 9.4 Methods to Fabricate Anisotropic Structures -- 9.4.1 Traditional Technology -- 9.4.1.1 Stepwise Polymerization -- 9.4.1.2 3D Printing -- 9.4.1.3 Macromolecular Assembly -- 9.4.2 Innovative Technology -- 9.5 Applications -- 9.5.1 Soft Robots -- 9.5.2 Artificial Muscles -- 9.5.3 Biomimetic Devices -- 9.5.4 Information Storage Materials -- 9.6 Conclusion -- Conflict of Interest -- Acknowledgments -- References -- Chapter 10 Hydrogels‐Based Electronic Devices for Biosensing Applications -- 10.1 Introduction -- 10.2 Flexible Hydrogel‐Based Sensors -- 10.2.1 Principles of Conductive Hydrogel Sensors -- 10.2.2 Improved Mechanical Properties of Hydrogel‐Based Sensors -- 10.2.3 Prolonged Longevity of Hydrogel Sensors -- 10.2.4 Expanded Usage Scenarios of Hydrogel‐Based Sensors -- 10.2.5 Multifunctionalization and Expanding Application of Hydrogel Sensor -- 10.3 Tissue-Machine Interfaces -- 10.3.1 Design and Mechanism of the Neural Interfaces -- 10.3.2 Multifunctional Applications of Biointerfaces -- 10.4 The Prospects of Hydrogel Bioelectronic Devices -- Acknowledgments -- References -- Index -- EULA. | |
Titolo autorizzato: | Smart stimuli-responsive polymers, films, and gels |
ISBN: | 3-527-83238-6 |
3-527-83237-8 | |
3-527-83239-4 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910830769103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |