Vai al contenuto principale della pagina

Single-Molecule Magnets : Molecular Architectures and Building Blocks for Spintronics



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Holynska Malgorzata Visualizza persona
Titolo: Single-Molecule Magnets : Molecular Architectures and Building Blocks for Spintronics Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2019
©2018
Descrizione fisica: 1 online resource (451 pages)
Disciplina: 541.378
Soggetto topico: Molecules - Magnetic properties
Magnets
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Editorial -- Acknowledgment -- Chapter 1 Introduction to Single‐Molecule Magnets -- 1.1 What Is a Single‐Molecule Magnet? -- 1.1.1 Single‐Chain Magnets (SCMs) -- 1.1.2 Single‐Ion Magnets (SIMs) -- 1.1.3 Single‐Toroid Magnets (STMs) -- 1.2 Historical Aspects -- 1.3 Recent Progress -- 1.3.1 SMMs Based on Actinides -- 1.3.2 Organometallic SMMs -- 1.3.3 Rational Design of SMMs -- 1.3.4 Quantum Computing -- 1.3.5 SMMs in Molecular Machines -- 1.3.6 Magnetic Refrigerants -- 1.3.7 Applications in Other Disciplines -- Acknowledgment -- References -- Chapter 2 Unique Magnetic Properties -- 2.1 Introduction -- 2.2 Basic Electromagnetic Definitions -- 2.3 Magnetostatic Energy (Magnetic Work) -- 2.4 Thermodynamic Relations -- 2.5 Definition of ac Magnetic Susceptibility -- 2.6 Representative Results -- 2.6.1 ac Susceptibility Measurements in Tris(Acetylacetonato)iron(III), (Fe(acac)3) -- 2.6.2 ac Susceptibility Measurements in a One‐Dimensional Chain Based on Mn6 Units -- 2.6.3 Spin Relaxation in a Ferromagnetically Coupled Triangular Cu3 Complex -- 2.7 Technical Aspects of the ac Susceptibility Measurements -- 2.8 Intermolecular Interactions -- 2.9 Conclusions -- References -- Chapter 3 Magnetic Modeling of Single‐molecule Magnets -- 3.1 Introduction -- 3.2 Atoms in a Magnetic Field -- 3.2.1 Free Atoms in a Magnetic Field -- 3.2.1.1 Lande g‐Factor -- 3.2.2 Brillouin Theory -- 3.2.2.1 J = 1/2 Quantum Moment -- 3.2.2.2 General Quantum Case -- 3.2.3 Energy Spectrum -- 3.2.3.1 One Electron Case -- 3.2.3.2 Many Electrons Case -- 3.2.3.3 Pauli Principle - The Two Electrons Case -- 3.2.3.4 (L, S)‐Multiplets - The Two Electrons Case -- 3.2.3.5 (L, S)‐Coupling -- 3.2.4 Crystal Fields -- 3.2.5 Single‐ion Anisotropy -- 3.2.5.1 Heavy Rare‐Earths Case -- 3.2.5.2 Expressions of Hcf -- 3.2.5.3 Kramer's Theorem.
3.3 Magnetic Modeling Tools -- 3.3.1 PHI v.3.0: Software for the Analysis of Anisotropic Monomeric and Exchange‐coupled Polynuclear d‐ and f‐Block Complexes -- 3.3.1.1 General Theory -- 3.3.1.2 Hamiltonian Formalism for the Exchange Coupling -- 3.3.1.3 Calculation of Thermodynamic Properties -- 3.3.1.4 Irreducible Tensor Operators (ITOs) Method -- 3.3.1.5 The Isotropic Case: Stepladder Manganese(III) Inverse‐[9‐MC‐3]‐metallacrown -- 3.3.1.6 Anisotropic Exchange Coupling -- 3.3.2 Monte Carlo Simulations: The ALPS Project Release v.2.0: Open Source Software for Strongly Correlated Systems -- 3.3.2.1 Stochastic Series Expansion (SSE) Quantum Monte Carlo Algorithm -- 3.3.2.2 Local vs Nonlocal Updates -- 3.3.2.3 Thermalization Process -- 3.3.2.4 ALPS Project: Definition of Input Files -- 3.3.2.5 The Case of Heterometallic Molecular Wheels -- 3.3.2.6 The Case of High‐nuclearity Copper Cages: Tricorne Cu21 and Saddle‐like Cyclic Cu16 -- 3.3.2.7 Other Examples. The Case of a MnIII6MnII6 Molecular Wheel -- References -- Chapter 4 Insight into Magnetic and Electronic Properties Through HFEPR Studies -- 4.1 Introduction: Magnetic vs Electronic Properties of Transition Metal Ions Including SMMs and SIMs -- 4.2 Basics of HFEPR as Applied to SIMs and Other Transition Metal Complexes -- 4.2.1 Spin Hamiltonian -- 4.2.2 Methodology of Extracting ZFS and g Information from HFEPR Spectra -- 4.3 Applicability of HFEPR to Investigating SMMs and SIMs -- 4.3.1 Polynuclear Clusters -- 4.3.2 Dimers -- 4.3.3 Mononuclear Complexes -- 4.3.4 Limitations to HFEPR -- 4.3.5 Techniques Alternative to HFEPR -- 4.4 Interplay Between Spin Hamiltonian Parameters and Crystal/Ligand‐Field Parameters. From Simple Ligand Field to Sophisticated Quantum Chemical Calculations -- 4.4.1 Recapitulation -- Acknowledgment -- References -- Chapter 5 Other Techniques to Study Single‐Molecule Magnets.
5.1 Introduction -- 5.2 The Mössbauer Effect -- 5.3 The Basic Principles of Mössbauer Spectroscopy -- 5.4 Hyperfine Interactions -- 5.4.1 The Isomer Shift -- 5.4.2 Quadrupole Splitting -- 5.4.3 Magnetic Hyperfine Interactions -- 5.4.4 General Remarks -- 5.5 Relaxation Phenomena and Dynamics -- 5.5.1 Mixed‐Valence Systems -- 5.6 Application of Mössbauer Spectroscopy to Single‐Molecule Magnets -- 5.6.1 [FeIII8O2(OH)12(tacn)6]Br8 ⋅ 9H2O -- 5.6.2 (pyrH)5[FeIII13O4F24(OMe)12] ⋅ 4H2O ⋅ MeOH -- 5.6.3 [FeIII11O7(dea)3(piv)12]Cl ⋅ 5MeCN -- 5.6.4 [HFeIII19O14(OEt)30] -- 5.6.5 [FeIII4(OMe)6(dpm)6] -- 5.6.6 {FeIII[FeIII(L1)2]3} -- 5.6.7 [FeII2(acpypentO)(NCO)3] -- 5.6.8 [FeII9(X)2(O2CMe)8{(2‐py)2CO2}4] (X = N3−, NCO−, OH−) -- 5.6.9 [FeII7(OMe)6(Hbmsae)6]Cl2 ⋅ 6H2O -- 5.6.10 [FeIIFeIII(L)(O2CMe)2](ClO4) -- 5.6.11 [(Me3TPyA)2FeII2(L)](BArF4)2 and [(Me3TPyA)2FeII/III2(L)](BArF4)3 ⋅ CH2Cl2 -- 5.6.12 [(18‐C‐6)K(thf)2][(tbsL)Fe3] and [(crypt‐222)K][(tbsL)Fe3] -- 5.7 Application of Mössbauer Spectroscopy to Single‐Ion Magnets -- 5.7.1 [M(solv)n][(tpaR)FeII] -- 5.7.2 [K(crypr‐222)][FeI{C(SiMe3)3}2] -- 5.7.3 [FeII{C(SiMe3)3}2] -- 5.7.4 [FeII{N(SiMe3)(Dipp)}2] -- 5.7.5 [FeII{OC6H3‐2,6‐(C6H3‐iPr2)2}2] -- 5.7.6 [FeI(cAAC)2Cl] -- 5.7.7 [FeI(cAAC)2][B(C6F5)4] -- 5.7.8 [K(L)][FeI{N(SiMe3)3}2] -- 5.7.9 [FeII(Eind)2] -- 5.8 Application of Mössbauer Spectroscopy to Fe/4f Single‐Molecule Magnets -- 5.8.1 [FeIII4DyIII4(teaH)8(N3)8(H2O)] ⋅ H2O ⋅ 4MeCN -- 5.8.2 [FeIII2LnIII2(OH)2(teaH)2(O2CCPh)6] ⋅ 3MeCN (LnIII = CeIII to YbIII) -- 5.8.3 [FeIII4LnIII2(teaH)4(N3)7(piv)3] ⋅ (LnIII = YIII, GdIII, TbIII, DyIII, HoIII, ErIII) -- 5.8.4 [FeIII4DyIII2(OH)2(n‐bdea)4(C6H5CO2)8] ⋅ MeCN -- 5.8.5 [FeIII4DyIII2(OH)2(n‐bdea)4((CH3)3CCO2)6(N3)2] ⋅ 3MeCN -- 5.8.6 [Fe7Dy3(µ4‐O)2(µ3‐OH)2(mdea)7(µ‐benzoate)4(N3)6] ⋅ 2H2O ⋅ 7MeOH -- 5.8.7 [Fe4Dy2(µ4‐O)2(NO3)2(piv)6(Hedte)2] ⋅ 4MeCN ⋅ C6H5OH.
5.8.8 [FeIII2Dy2(µ3‐OH)2(teg)2(N3)2(C6H5CO2)4] -- 5.8.9 [FeIII2Dy2(µ3‐OH)2(pmide)2(p‐Me‐C6H5CO2)6] -- 5.8.10 [FeIII2DyIII2(OH)2(L1)2(HL2)2(NO3)4(H2O)1.5(MeOH)0.5] ⋅ 6MeCN -- 5.8.11 [FeIII2Ln2(H2L)4(NO3)2](ClO4)2 ⋅ 2MeOH ⋅ 2H2O (Ln = GdIII, DyIII, TbIII) -- 5.8.12 [FeIII3Ln(µ3‐O)2(CCl3CO2)8(H2O)(thf)3] ⋅ x(thf) ⋅ y(heptane) (LnIII = CeIII‐HoIII, LuIII, YIII) -- 5.8.13 [FeII2Dy(L)2(H2O)](ClO4)2 ⋅ 2H2O -- 5.9 Application of Mössbauer Spectroscopy to Cyanide‐Bridged Complexes -- 5.10 Other Spectroscopic Techniques Used to Study Iron‐Based SMMs -- 5.11 Conclusions -- References -- Chapter 6 Synthesis and Chemistry of Single‐molecule Magnets -- 6.1 General Introduction for the Synthesis of SMMs and SIMs‐Organization of the Chapter -- 6.2 Synthetic Aspects for Polynuclear 3d Metal SMMs -- 6.2.1 Approaches Using Simple 3d Metal Starting Materials -- 6.2.2 Approaches Using Preformed Coordination Clusters or SMMs as Starting Materials - Retention of Nuclearity -- 6.2.3 Approaches Using Preformed Coordination Clusters or SMMs as Starting Materials - Change of Nuclearity -- 6.3 Synthetic Aspects for Dinuclear and Polynuclear 4f Metal Complexes with SMM Properties -- 6.3.1 O‐Bridged Groups -- 6.3.2 Chlorido Bridges -- 6.3.3 Monoatomic and Polyatomic N‐based Ligands -- 6.3.4 Sulfur‐bridged SMMs -- 6.3.5 Organometallic Bridges -- 6.3.6 Radical‐bridged Lanthanide(III) SMMs -- 6.3.7 Multidecker Lanthanide(III)‐Phthalocyanine SMMs -- 6.4 Synthetic Aspects for Dinuclear and Polynuclear Actinide SMMs -- 6.5 Synthesis of 3d/4f‐, 3d/5f‐, 4f/5f‐Metal and Other Heterometallic SMMs -- 6.5.1 3d/4f‐Metal SMMs -- 6.5.2 3d/5f‐Metal SMMs -- 6.5.3 4f/5f‐Metal Clusters and SMMs -- 6.5.4 Other Heterometallic SMMs - the Synthetic Utility of the Cyano Ligand -- 6.6 Synthesis of 3d Metal SIMs -- 6.7 Synthetic Methodology for 4f Metal SIMs -- 6.7.1 Phthalocyanine‐based 4f Metal SIMs.
6.7.2 Non‐phthalocyanine 4f Metal SIMs -- 6.8 Synthetic Routes for 5f Metal SIMs -- 6.9 Concluding Comments in Brief-Prognosis for the Future -- References -- Chapter 7 Breakthrough in Radical‐bridged Single‐molecule Magnets -- 7.1 General Information About Organic Radicals and Their Magnetic Properties -- 7.2 3d Metal Radical SMMs -- 7.2.1 Nitroxide Radical SMMs -- 7.2.2 Carbene Radical SMMs -- 7.2.3 Benzosemiquinonoid and Nindigo Radical SMMs -- 7.3 4f Metal Radical SMMs -- 7.3.1 Phthalocyanine Radical SMMs -- 7.3.2 Nitroxide Radical SMMs -- 7.3.3 N23− Radical SMMs -- 7.3.4 Other 4f Radical SMMs -- 7.4 3d-4f Metal Radical SMMs -- 7.5 5f Metal Radical SMMs -- 7.6 Conclusions -- References -- Chapter 8 Assembly of Polynuclear Single‐molecule Magnets -- 8.1 Introduction -- 8.2 History -- 8.3 Topological Methods in Crystal Chemistry and Coordination Chemistry -- 8.3.1 General Overview of ToposPro -- 8.3.2 Example of the ToposPro Analysis of Polynuclear Coordination Clusters -- 8.4 Polynuclear Coordination Clusters Assembly and Topology -- 8.5 3d-4f PCCs -- 8.5.1 Synthetic Approach for 3d-4f PCCs -- 8.5.2 3d-4f SMMs PCCs -- 8.6 Assembly Examples and Graph Comparison -- 8.7 Targeting for New Topologies -- 8.8 Synthetic Aspects in Recent Examples -- 8.9 Perspective -- References -- Annexure -- Chapter 1 -- Chapter 2 -- Chapter 3 -- Chapter 4 -- Chapter 5 -- Chapter 6 -- Chapter 7 -- Chapter 8 -- Hints/Solutions -- About the Authors -- Index -- EULA.
Sommario/riassunto: "Concise overview of synthesis and characterization of single molecule magnets. Molecular magnetism is explored as an alternative to conventional solid-state magnetism as the basis for ultrahigh-density memory materials with extremely fast processing speeds. In particular single-molecule magnets (SMM) are in the focus of current research, both because of their intrinsic magnetization properties, as well as because of their potential use in molecular spintronic devices. Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics starts with a general introduction to single-molecule magnets, which helps readers to understand the evolution of the field and its future. The following chapters deal with the current synthetic methods leading to SMMs, their magnetic properties and their characterization by methods such as high-field electron paramagnetic resonance, paramagnetic nuclear magnetic resonance, and magnetic circular dichroism. The book closes with an overview of radical-bridged SMMs, which have shown application potential as building blocks for high-density memories. Covers a hot topic - single-molecule magnetism is one of the fastest growing research fields in inorganic chemistry and materials science ; Provides researchers and newcomers to the field with a solid foundation for their further work. Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics will appeal to inorganic chemists, materials scientists, molecular physicists, and electronics engineers interested in the rapidly growing field of study."--Page 4 of cover
Titolo autorizzato: Single-Molecule Magnets  Visualizza cluster
ISBN: 3-527-80991-0
3-527-80989-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830661503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui