Vai al contenuto principale della pagina

Hydrogen Electrical Vehicles / / edited by Mehmet Sankir and Nurdan Demirci Sankir



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Hydrogen Electrical Vehicles / / edited by Mehmet Sankir and Nurdan Demirci Sankir Visualizza cluster
Pubblicazione: Hoboken, NJ ; ; Beverly, MA : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , [2023]
©2023
Descrizione fisica: 1 online resource (275 pages)
Disciplina: 629.22974
Soggetto topico: Fuel cell vehicles
Hybrid electric vehicles
Hydrogen as fuel
Persona (resp. second.): SankirMehmet
Demirci SankirNurdan
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Hydrogen Electrical Vehicles -- 1.1 Hydrogen Usage in Electrical Vehicles -- 1.2 Hydrogen Production for Electrical Vehicles -- 1.3 Hydrogen Storage Methods -- 1.4 State-of-the-Art for Hydrogen Generation and Usage for Electrical Vehicles -- 1.5 Conclusions -- References -- Chapter 2 Study on a New Hydrogen Storage System - Performance, Permeation, and Filling/Refilling -- 2.1 Introduction -- 2.2 Outline of the New Storage System -- 2.2.1 Theoretical Tools Used for the System Analysis -- 2.3 Results -- 2.4 Conclusions -- Abbreviations -- List of Symbols -- Subscripts -- Greek Symbols -- References -- Chapter 3 A Review on Hydrogen Compression Methods for Hydrogen Refuelling Stations -- 3.1 Introduction -- 3.2 Mechanical Compressors -- 3.2.1 Reciprocating Piston Compressors -- 3.2.1.1 Basic Components and Operation of Reciprocating Piston Compressors -- 3.2.1.2 Thermodynamic and Motion Dynamics Principles of Reciprocating Piston Compressors -- 3.2.2 Reciprocating Diaphragm Compressors -- 3.2.2.1 Reciprocating Diaphragm Compressor Components -- 3.2.2.2 Operating Principle of Diaphragm Compressor -- 3.2.3 Integration of Reciprocating Piston Compressors in Hydrogen Refueling Stations -- 3.3 Non-Mechanical Compressors -- 3.3.1 Metal Hydride Compressors -- 3.3.1.1 Principle of Operation -- 3.3.2 Typical Metal Hydride Compressor Stage -- 3.3.2.1 Thermodynamic Analysis of Single Metal Hydride Compressor Stage -- 3.3.2.2 Metal Hydride Compressor Stage Design -- 3.3.3 Metal Hydride Compressors Stages Integration -- 3.3.4 Metal Hydride Compressor Integration in Hydrogen Refuelling Stations -- 3.4 Electrochemical Compressors -- 3.4.1 Components and Operation of Electrochemical Compressors -- 3.4.2 Integration of Electrochemical Compression in a Hydrogen Refuelling Station -- References.
Chapter 4 Current Technologies and Future Trends of Hydrogen Propulsion Systems in Hybrid Small Unmanned Aerial Vehicles -- 4.1 Introduction of Fuel Cell-Based Propulsion for UAVs -- 4.2 Unified Classification of the Components | of a Hybrid Electric Power System in UAVs -- 4.2.1 Converters -- 4.2.2 Storage Systems -- 4.3 Fuel Cell-Based Hybrid Propulsion System Architectures -- 4.4 Experiments on Fuel Cell-Based UAVs -- 4.5 Energy Management Strategies of Fuel Cell-Based Propulsion -- 4.6 Conclusions and Future Trends for Fuel Cell-Based Propulsion of UAVs -- References -- Chapter 5 Test and Evaluation of Hydrogen Fuel Cell Vehicles -- 5.1 Introduction -- 5.2 Test and Evaluation System -- 5.2.1 Test and Evaluation System for FCVs -- 5.2.2 Test and Evaluation System for FCEs -- 5.2.3 Test and Evaluation System for Main Components -- 5.3 Safety Performance Requirements for FCVs -- 5.3.1 Safety Requirements for Whole Vehicle of FCVs -- 5.3.1.1 Requirements for Vehicle Hydrogen Emission -- 5.3.1.2 Requirements for Vehicle Hydrogen Leakage -- 5.3.1.3 Requirements for Reminder of Low Residual Hydrogen Gas in the Tank -- 5.3.1.4 Requirements for Electrical Safety -- 5.3.2 Safety Requirements for Hydrogen System Safety -- 5.3.2.1 Requirements for the Hydrogen Storage Tanks and Pipelines -- 5.3.2.2 Requirements for Pressure Relief System -- 5.3.2.3 Requirements for Hydrogen Refueling and Receptacle -- 5.3.2.4 Requirements for Hydrogen Pipeline Leakage and Detection -- 5.3.2.5 Requirements for the Function of Hydrogen Leakage Alarm Device -- 5.3.2.6 Requirements for Hydrogen Discharge of Storage Tank -- 5.4 Hydrogen Leakage and Emission Test -- 5.4.1 Analysis of Existing Related Standards -- 5.4.2 Development of Sealed Test Chamber -- 5.4.2.1 Internal Dimensions -- 5.4.2.2 Air Exchange Rate -- 5.4.2.3 Security Measures Adopted for Test Chamber.
5.4.2.4 Arrangement of Key Components -- 5.4.3 Test Conditions -- 5.4.4 Test of Two-Fuel-Cell Passenger Cars -- 5.4.5 Test Results Analysis -- 5.4.5.1 Hydrogen Leakage in the Parking State -- 5.4.5.2 Hydrogen Emissions Under Combined Operating Conditions -- 5.5 Test for Energy Consumption and Range of FCVs -- 5.5.1 Test Vehicle Preparation -- 5.5.2 Test Procedure -- 5.5.3 Requirements for Data Collection -- 5.5.4 Range and Energy Consumption Calculation for FCVs -- 5.5.4.1 Data Process Steps for the Plugin FCVs -- 5.5.4.2 Data Analysis for the Plugin FCVs -- 5.5.5 Test of Range and Energy Consumption for Fuel Cell Passenger Car -- 5.5.5.1 Test of Plugin Fuel Cell Car -- 5.5.5.2 Test of Non-Plugin Fuel Cell Car -- 5.5.6 Test of Range and Energy Consumption for Fuel Cell Truck -- 5.5.6.1 Brief Introduction of Test Vehicle and Test Cycles -- 5.5.6.2 Test Requirements -- 5.5.6.3 Power Change and Energy Consumption Results -- 5.5.6.4 Hydrogen Emission and Hydrogen Leakage -- 5.6 Subzero Cold Start Test for FCVs -- 5.6.1 Test Method for Cold Start Under Subzero Temperature -- 5.6.1.1 Test Conditions -- 5.6.1.2 Vehicle Soaking Under Subzero Temperature -- 5.6.1.3 Test Process for Subzero Cold Start of FCE -- 5.6.1.4 Test Process for Subzero Cold Start of FCVs -- 5.6.1.5 Data Collection and Results -- 5.6.2 Test for Subzero Cold Start of FCVs -- 5.6.2.1 Test System Development -- 5.6.2.2 Analysis of Test Results -- 5.7 Conclusion -- References -- Chapter 6 Hydrogen Production and Polymer Electrode Membrane (PEM) Fuel Cells for Electrical Vehicles -- 6.1 Introduction -- 6.1.1 Energy Challenges and Green Energy Demand -- 6.1.2 FC in Green Energy Aspect -- 6.1.3 Recent Developments in FC Vehicles (FCV) Market -- 6.2 PEMFC Technology -- 6.2.1 PEMFC Working Principle and Components -- 6.2.1.1 Proton Exchange Membrane -- 6.2.1.2 Electrodes.
6.2.1.3 Bipolar Plate (BP) -- 6.2.2 Fuel Cell Efficiency -- 6.2.3 Challenges to Overcome for FCVs -- 6.3 Hydrogen Storage for FCs and On-Demand Hydrogen Generation -- 6.3.1 Hydrogen Storage -- 6.3.1.1 Physical-Based Hydrogen Storage -- 6.3.1.2 Material-Based Hydrogen Storage -- 6.3.2 On-Board Hydrogen Generation -- 6.3.3 Are the FCs Considered to be 100% Green? -- 6.4 FCs and Automotive Applications -- 6.4.1 PEMFC Systems in Automobiles -- Summary and Concluding Remarks -- References -- Chapter 7 Power Density and Durability in Fuel Cell Vehicles -- 7.1 Fuel Cell Performance and Power Density -- 7.1.1 Introduction -- 7.1.2 Bipolar Plate -- 7.1.2.1 Blockages Along the Flow-Field of PEMFCs -- 7.1.3 Bio-Inspired Flow Fields -- 7.1.4 Metal Foam -- 7.1.5 Recent Progress in Bipolar Plates of Vehicular Fuel Cells -- 7.2 Fuel Cell Degradation Mechanisms -- 7.2.1 Introduction -- 7.2.2 Start-Stop Cycling -- 7.2.3 Open Circuit Voltage (OCV)/Idling Operation -- 7.2.3.1 H2O2 Generation and Free Radicals' Attack -- 7.2.3.2 Pt Catalyst Degradation -- 7.2.4 Load Cycling -- 7.2.4.1 Mechanical Degradation of Load Cycling -- 7.2.4.2 Starvation -- 7.2.4.3 Chemical Degradation of Load Cycling -- 7.2.5 High Power -- 7.2.6 Summary of Aging Mechanisms -- 7.2.7 Measures to Control and Reduce the Degradation Rate of Fuel Cell -- References -- Index -- EULA.
Titolo autorizzato: Hydrogen Electrical Vehicles  Visualizza cluster
ISBN: 1-394-16755-5
1-394-16754-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830443803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Advances in hydrogen production and storage.