Vai al contenuto principale della pagina
Autore: | Mirestean Alin |
Titolo: | Limited Information Bayesian Model Averaging for Dynamic Panels with Short Time Periods / / Alin Mirestean, Charalambos Tsangarides, Huigang Chen |
Pubblicazione: | Washington, D.C. : , : International Monetary Fund, , 2009 |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (45 p.) |
Disciplina: | 332.152 |
Soggetto topico: | Panel analysis |
Bayesian statistical decision theory | |
Bayesian Analysis: General | |
Bayesian inference | |
Bayesian models | |
Computer Programs: General | |
Data capture & analysis | |
Data Collection and Data Estimation Methodology | |
Data Processing | |
Data processing | |
Econometric models | |
Econometrics & economic statistics | |
Econometrics | |
Electronic data processing | |
Estimation techniques | |
Estimation | |
Altri autori: | ChenHuigang TsangaridesCharalambos |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Contents; I. Introduction; II. Model Uncertainty in the Bayesian Context; A. Model Selection and Hypothesis Testing; B. Bayesian Model Averaging; C. Choice of Priors; III. Limited Information Bayesian Model Averaging; A. A Dynamic Panel Data Model with Endogenous Regressors; B. Estimation and Moment Conditions; C. The Limited Information Criterion; IV. Monte Carlo Simualtions and Results; A. The Data Generating Process; B. Simulation Results; V. Conclusion; References; Tables; 1. Posterior Probability of the True Model; 2. Posterior Probability Ratio of True Model/Best among the Other Models |
3. Probability of Retrieving the True Model4. Model Recovery: Medians and Variances of Posterior Inclusi; 5. Model Recovery: Medians and Variances of Estimated Paramet; 6. Posterior Probability of the True Model (Non-Gaussian Case); 7. Posterior Probability Ratio: True Model/best among the Other Models (Non-Gaussian Case); 8. Probability of Retrieving the True Model (Non-Gaussian Case); 9. Model Recovery: Medians and Variances of Posterior Inclusion Probability for Each Variable (Non-Gaussian Case); 10. Model Recovery: Medians and Variances of Estimated Parameter Values (Non- Gaussian Case) | |
Appendix A Figures1. Posterior Densities for the Probabilities in Table 1; 2. Posterior Densities for the Probabilities in Table 2; 3. Box Plots for Parameters in Table 5; 4. Posterior Densities for the Probabilities in Table 6; 5. Posterior Densities for the Probabilities in Table 7; 6. Box Plots for Parameters in Table 10 | |
Sommario/riassunto: | Bayesian Model Averaging (BMA) provides a coherent mechanism to address the problem of model uncertainty. In this paper we extend the BMA framework to panel data models where the lagged dependent variable as well as endogenous variables appear as regressors. We propose a Limited Information Bayesian Model Averaging (LIBMA) methodology and then test it using simulated data. Simulation results suggest that asymptotically our methodology performs well both in Bayesian model selection and averaging. In particular, LIBMA recovers the data generating process very well, with high posterior inclusion probabilities for all the relevant regressors, and parameter estimates very close to the true values. These findings suggest that our methodology is well suited for inference in dynamic panel data models with short time periods in the presence of endogenous regressors under model uncertainty. |
Titolo autorizzato: | Limited Information Bayesian Model Averaging for Dynamic Panels with Short Time Periods |
ISBN: | 1-4623-7192-2 |
1-4527-1274-3 | |
9786612842955 | |
1-4518-7221-6 | |
1-282-84295-1 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910812320003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |