Vai al contenuto principale della pagina

Limited Information Bayesian Model Averaging for Dynamic Panels with Short Time Periods / / Alin Mirestean, Charalambos Tsangarides, Huigang Chen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Mirestean Alin Visualizza persona
Titolo: Limited Information Bayesian Model Averaging for Dynamic Panels with Short Time Periods / / Alin Mirestean, Charalambos Tsangarides, Huigang Chen Visualizza cluster
Pubblicazione: Washington, D.C. : , : International Monetary Fund, , 2009
Edizione: 1st ed.
Descrizione fisica: 1 online resource (45 p.)
Disciplina: 332.152
Soggetto topico: Panel analysis
Bayesian statistical decision theory
Bayesian Analysis: General
Bayesian inference
Bayesian models
Computer Programs: General
Data capture & analysis
Data Collection and Data Estimation Methodology
Data Processing
Data processing
Econometric models
Econometrics & economic statistics
Econometrics
Electronic data processing
Estimation techniques
Estimation
Altri autori: ChenHuigang  
TsangaridesCharalambos  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Contents; I. Introduction; II. Model Uncertainty in the Bayesian Context; A. Model Selection and Hypothesis Testing; B. Bayesian Model Averaging; C. Choice of Priors; III. Limited Information Bayesian Model Averaging; A. A Dynamic Panel Data Model with Endogenous Regressors; B. Estimation and Moment Conditions; C. The Limited Information Criterion; IV. Monte Carlo Simualtions and Results; A. The Data Generating Process; B. Simulation Results; V. Conclusion; References; Tables; 1. Posterior Probability of the True Model; 2. Posterior Probability Ratio of True Model/Best among the Other Models
3. Probability of Retrieving the True Model4. Model Recovery: Medians and Variances of Posterior Inclusi; 5. Model Recovery: Medians and Variances of Estimated Paramet; 6. Posterior Probability of the True Model (Non-Gaussian Case); 7. Posterior Probability Ratio: True Model/best among the Other Models (Non-Gaussian Case); 8. Probability of Retrieving the True Model (Non-Gaussian Case); 9. Model Recovery: Medians and Variances of Posterior Inclusion Probability for Each Variable (Non-Gaussian Case); 10. Model Recovery: Medians and Variances of Estimated Parameter Values (Non- Gaussian Case)
Appendix A Figures1. Posterior Densities for the Probabilities in Table 1; 2. Posterior Densities for the Probabilities in Table 2; 3. Box Plots for Parameters in Table 5; 4. Posterior Densities for the Probabilities in Table 6; 5. Posterior Densities for the Probabilities in Table 7; 6. Box Plots for Parameters in Table 10
Sommario/riassunto: Bayesian Model Averaging (BMA) provides a coherent mechanism to address the problem of model uncertainty. In this paper we extend the BMA framework to panel data models where the lagged dependent variable as well as endogenous variables appear as regressors. We propose a Limited Information Bayesian Model Averaging (LIBMA) methodology and then test it using simulated data. Simulation results suggest that asymptotically our methodology performs well both in Bayesian model selection and averaging. In particular, LIBMA recovers the data generating process very well, with high posterior inclusion probabilities for all the relevant regressors, and parameter estimates very close to the true values. These findings suggest that our methodology is well suited for inference in dynamic panel data models with short time periods in the presence of endogenous regressors under model uncertainty.
Titolo autorizzato: Limited Information Bayesian Model Averaging for Dynamic Panels with Short Time Periods  Visualizza cluster
ISBN: 1-4623-7192-2
1-4527-1274-3
9786612842955
1-4518-7221-6
1-282-84295-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910812320003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IMF Working Papers; Working Paper ; ; No. 2009/074