Vai al contenuto principale della pagina
Autore: | Mühlherr Bernhard Matthias |
Titolo: | Descent in buildings / / Bernhard Mühlherr, Holger P. Petersson, and Richard M. Weiss |
Pubblicazione: | Princeton : , : Princeton University Press, , 2015 |
Descrizione fisica: | 1 online resource (353 pages) : illustrations |
Disciplina: | 516/.13 |
Soggetto topico: | Buildings (Group theory) |
Combinatorial geometry | |
Soggetto non controllato: | Bruhat-Tits building |
Clifford invariant | |
Coxeter diagram | |
Coxeter group | |
Coxeter system | |
Euclidean plane | |
Fundamental Theorem of Descent | |
Moufang building | |
Moufang condition | |
Moufang polygon | |
Moufang quadrangle | |
Moufang set | |
Moufang structure | |
Pfister form | |
Structure Theorem | |
Tits index | |
abelian group | |
absolute Coxeter diagram | |
absolute Coxeter system | |
absolute rank | |
affine building | |
algebraic group | |
anisotropic pseudo-quadratic space | |
anisotropic quadratic space | |
anti-isomorphism | |
apartment | |
arctic region | |
automorphism | |
bilinear form | |
biquaternion division algebra | |
building | |
canonical isomorphism | |
chamber | |
compatible representation | |
descent group | |
descent | |
discrete valuation | |
exceptional Moufang quadrangle | |
exceptional quadrangle | |
finite dimension | |
fixed point building | |
fixed point theory | |
gem | |
generalized quadrangle | |
hyperbolic plane | |
hyperbolic quadratic module | |
hyperbolic quadratic space | |
involutory set | |
isomorphism | |
isotropic quadratic space | |
length function | |
non-abelian group | |
parallel residues | |
polar space | |
projection map | |
proper indifferent set | |
proper involutory set | |
pseudo-quadratic space | |
pseudo-split building | |
quadratic form | |
quadratic module | |
quadratic space | |
quaternion division algebra | |
ramified quadrangle | |
ramified quaternion division algebra | |
ramified separable quadratic extension | |
relative Coxeter diagram | |
relative Coxeter group | |
relative Coxeter system | |
relative rank | |
residual quadratic spaces | |
residue | |
root group sequence | |
root | |
round quadratic space | |
scalar multiplication | |
semi-ramified quadrangle | |
separable quadratic extension | |
simplicial complex | |
special vertex | |
spherical building | |
split quadratic space | |
standard involution | |
subbuilding of split type | |
subbuilding | |
tamely ramified division algebra | |
thick building | |
thin T-building | |
trace map | |
trace | |
unramified quadrangle | |
unramified quadratic space | |
unramified quaternion division algebra | |
unramified separable quadratic extension | |
vector space | |
vertex | |
weak isomorphism | |
wild quadratic space | |
Persona (resp. second.): | PeterssonHolger P. <1939-> |
WeissRichard M <1946-> (Richard Mark) | |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Frontmatter -- Contents -- Preface -- PART 1. Moufang Quadrangles -- Chapter 1. Buildings -- Chapter 2. Quadratic Forms -- Chapter 3. Moufang Polygons -- Chapter 4. Moufang Quadrangles -- Chapter 5. Linked Tori, I -- Chapter 6. Linked Tori, II -- Chapter 7. Quadratic Forms over a Local Field -- Chapter 8. Quadratic Forms of Type E6, E7 and E8 -- Chapter 9. Quadratic Forms of Type F4 -- PART 2. Residues in Bruhat-Tits Buildings -- Chapter 10. Residues -- Chapter 11. Unramified Quadrangles of Type E6, E7 and E8 -- Chapter 12. Semi-ramified Quadrangles of Type E6, E7 and E8 -- Chapter 13. Ramified Quadrangles of Type E6, E7 and E8 -- Chapter 14. Quadrangles of Type E6, E7 and E8: Summary -- Chapter 15. Totally Wild Quadratic Forms of Type E7 -- Chapter 16. Existence -- Chapter 17. Quadrangles of Type F4 -- Chapter 18. The Other Bruhat-Tits Buildings -- PART 3. Descent -- Chapter 19. Coxeter Groups -- Chapter 20. Tits Indices -- Chapter 21. Parallel Residues -- Chapter 22. Fixed Point Buildings -- Chapter 23. Subbuildings -- Chapter 24. Moufang Structures -- Chapter 25. Fixed Apartments -- Chapter 26. The Standard Metric -- Chapter 27. Affine Fixed Point Buildings -- PART 4. Galois Involutions -- Chapter 28. Pseudo-Split Buildings -- Chapter 29. Linear Automorphisms -- Chapter 30. Strictly Semi-linear Automorphisms -- Chapter 31. Galois Involutions -- Chapter 32. Unramified Galois Involutions -- PART 5. Exceptional Tits Indices -- Chapter 33. Residually Pseudo-Split Buildings -- Chapter 34. Forms of Residually Pseudo-Split Buildings -- Chapter 35. Orthogonal Buildings -- Chapter 36. Indices for the Exceptional Bruhat-Tits Buildings -- Bibliography -- Index |
Sommario/riassunto: | Descent in Buildings begins with the resolution of a major open question about the local structure of Bruhat-Tits buildings. The authors then put their algebraic solution into a geometric context by developing a general fixed point theory for groups acting on buildings of arbitrary type, giving necessary and sufficient conditions for the residues fixed by a group to form a kind of subbuilding or "form" of the original building. At the center of this theory is the notion of a Tits index, a combinatorial version of the notion of an index in the relative theory of algebraic groups. These results are combined at the end to show that every exceptional Bruhat-Tits building arises as a form of a "residually pseudo-split" Bruhat-Tits building. The book concludes with a display of the Tits indices associated with each of these exceptional forms.This is the third and final volume of a trilogy that began with Richard Weiss' The Structure of Spherical Buildings and The Structure of Affine Buildings. |
Titolo autorizzato: | Descent in buildings |
ISBN: | 1-4008-7401-7 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910797524903321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |