Vai al contenuto principale della pagina

An elementary recursive bound for effective positivstellensatz and Hilbert's 17th problem / / Henri Lombardi, Daniel Perrucci, Marie-Françoise Roy



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lombardi Henri Visualizza persona
Titolo: An elementary recursive bound for effective positivstellensatz and Hilbert's 17th problem / / Henri Lombardi, Daniel Perrucci, Marie-Françoise Roy Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , 2020
Descrizione fisica: 1 online resource (138 pages)
Disciplina: 512.9422
Soggetto topico: Polynomials
Algebraic fields
Recursive functions
Classificazione: 12D1514P9913J30
Persona (resp. second.): PerrucciDaniel
RoyM.-F (Marie-Françoise)
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Weak inference and weak existence -- Intermediate value theorem -- Fundamental theorem of algebra -- Hermite's theory -- Elimination of one variable -- Proof of the main theorems -- Annex.
Sommario/riassunto: "We prove an elementary recursive bound on the degrees for Hilbert's 17th problem. More precisely we express a nonnegative polynomial as a sum of squares of rational functions, and we obtain as degree estimates for the numerators and denominators the following tower of five exponentials 222d4k where d is the degree and k is the number of variables of the input polynomial. Our method is based on the proof of an elementary recursive bound on the degrees for Stengle's Positivstellensatz. More precisely we give an algebraic certificate of the emptyness of the realization of a system of sign conditions and we obtain as degree bounds for this certificate a tower of five exponentials, namely 2²(2max{2,d}4k+s2kmax{2,d}16kbit(d)) where d is a bound on the degrees, s is the number of polynomials and k is the number of variables of the input polynomials--
Titolo autorizzato: An elementary recursive bound for effective positivstellensatz and Hilbert's 17th problem  Visualizza cluster
ISBN: 1-4704-5662-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910794062503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society ; ; Volume 263.