Vai al contenuto principale della pagina

Spatiotemporal data analysis / / Gidon Eshel



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Eshel Gidon <1958-> Visualizza persona
Titolo: Spatiotemporal data analysis / / Gidon Eshel Visualizza cluster
Pubblicazione: Princeton : , : Princeton University Press, , [2012]
©2012
Edizione: Course Book
Descrizione fisica: 1 online resource (336 p.)
Disciplina: 519.5/36
Soggetto topico: Spatial analysis (Statistics)
Soggetto non controllato: EOF analysis
EOF
GramГchmidt orthogonalization
SVD analysis
SVD
astrophysics
autocorrelation functions
autocovariance
autoregressive model
climate science
column space
covariability matrix
data analysis
data matrices
degrees of freedom
deterministic science
ecology
eigen-decomposition
eigen-techniques
eigenanalysis
eigenvalues
empirical orthogonal functions
empirical science
empiricism
exercises
forward problem
geophysics
inverse problem
linear algebra
linear regression
matrices
matrix structure
matrix
medicine
multidimensional data sets
multidimensional data
nondeterministic phenomena
null space
phenomena
probability distribution
row space
singular value decomposition
spatiotemporal data
spectral representation
square matrices
statistics
stochastic processes
subjective decisions
theoretical science
time series
timescale
tornado
variables
vectors
Classificazione: SCI019000MAT002050
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Frontmatter -- Contents -- Preface -- Acknowledgments -- Part 1. Foundations -- One. Introduction and Motivation -- Two. Notation and Basic Operations -- Three. Matrix Properties, Fundamental Spaces, Orthogonality -- Four. Introduction to Eigenanalysis -- Five. The Algebraic Operation of SVD -- Part 2. Methods of Data Analysis -- Six. The Gray World of Practical Data Analysis: An Introduction to Part 2 -- Seven. Statistics in Deterministic Sciences: An Introduction -- Eight. Autocorrelation -- Nine. Regression and Least Squares -- Ten. The Fundamental Theorem of Linear Algebra -- Eleven. Empirical Orthogonal Functions -- Twelve. The SVD Analysis of Two Fields -- Thirteen. Suggested Homework -- Index
Sommario/riassunto: "A severe thunderstorm morphs into a tornado that cuts a swath of destruction through Oklahoma. How do we study the storm's mutation into a deadly twister? Avian flu cases are reported in China. How do we characterize the spread of the flu, potentially preventing an epidemic? The way to answer important questions like these is to analyze the spatial and temporal characteristics--origin, rates, and frequencies--of these phenomena. This comprehensive text introduces advanced undergraduate students, graduate students, and researchers to the statistical and algebraic methods used to analyze spatiotemporal data in a range of fields, including climate science, geophysics, ecology, astrophysics, and medicine. Gidon Eshel begins with a concise yet detailed primer on linear algebra, providing readers with the mathematical foundations needed for data analysis. He then fully explains the theory and methods for analyzing spatiotemporal data, guiding readers from the basics to the most advanced applications. This self-contained, practical guide to the analysis of multidimensional data sets features a wealth of real-world examples as well as sample homework exercises and suggested exams"--
Titolo autorizzato: Spatiotemporal data analysis  Visualizza cluster
ISBN: 1-4008-4063-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910789871903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui