Vai al contenuto principale della pagina
Autore: | Sally Paul J. |
Titolo: | Analytic continuation of the irreducible unitary representations of the universal covering group of SL(2, R) / / by Paul J. Sally |
Pubblicazione: | Providence : , : American Mathematical Society, , 1967 |
Descrizione fisica: | 1 online resource (100 p.) |
Soggetto topico: | Algebraic topology |
Note generali: | Cover title. |
Nota di bibliografia: | Bibliography: pages 93-94. |
Nota di contenuto: | ""Table of Contents""; ""Introduction""; ""Chapter I. Irreducible Unitary Representations of SL(2, R)""; ""0. Introduction""; ""1. The principal series""; ""2. The complementary series""; ""3. The discrete series""; ""Chapter II. Irreducible Unitary Representations of the Universal Covering Group of SL(2, R)""; ""0. Introduction""; ""1. Description of the universal covering group""; ""2. The principal series of representations of G""; ""3. The intertwining operators for the principal series""; ""4. The complementary series of representations of G"" |
""5. The discrete series of representations of G""""Chapter III. Analytic Continuation of the Principal Series""; ""0. Introduction""; ""1. The normalized principal series""; ""2. Analytic continuation of the operator R[sup(â?)][sub(h)](p[sub(1)],s)""; ""3. Proof of Theorem (3.0.1)""; ""4. The canonical basis and matrix elements for the normalized principal series""; ""Chapter IV. Analytic Continuation of the Discrete Series""; ""0. Introduction""; ""1. The normalized discrete series""; ""2. Analytic continuation of the normalized positive discrete series"" | |
""3. The canonical basis and matrix elements for the normalized discrete series"" | |
Titolo autorizzato: | Analytic continuation of the irreducible unitary representations of the universal covering group of SL(2, R) |
ISBN: | 1-4704-0016-2 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788603003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |