Vai al contenuto principale della pagina
| Autore: |
Pavlović Miroslav
|
| Titolo: |
Function classes on the unit disc : an introduction / / Miroslav Pavlović
|
| Pubblicazione: | Berlin : , : De Gruyter, , [2014] |
| ©2014 | |
| Descrizione fisica: | 1 online resource (463 p.) |
| Disciplina: | 510 |
| Soggetto topico: | Functional analysis |
| Soggetto non controllato: | Bergman Space |
| Besov-Lipschitz Space | |
| Bounded Mean Oscillation | |
| Hardy Space | |
| Littlewood-Paley g-Function | |
| Classificazione: | SK 600 |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Front matter -- Preface / Pavlović, Miroslav -- Contents -- 1. The Poisson integral and Hardy spaces -- 2. Subharmonic functions and Hardy spaces -- 3. Subharmonic behavior and mixed norm spaces -- 4. Taylor coefficients with applications -- 5. Besov spaces -- 6. The dual of H1 and some related spaces -- 7. Littlewood-Paley theory -- 8. Lipschitz spaces of first order -- 9. Lipschitz spaces of higher order -- 10. One-to-one mappings -- 11. Coefficients multipliers -- 12. Toward a theory of vector-valued spaces -- A. Quasi-Banach spaces -- B. Interpolation and maximal functions -- Bibliography -- Index |
| Sommario/riassunto: | This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p › 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic. |
| Titolo autorizzato: | Function classes on the unit disc ![]() |
| ISBN: | 3-11-028190-2 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910787601603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |