Vai al contenuto principale della pagina
| Autore: |
Johnson Oliver (Oliver Thomas)
|
| Titolo: |
Information theory and the central limit theorem [[electronic resource] /] / Oliver Johnson
|
| Pubblicazione: | London, : Imperial College Press |
| River Edge, NJ, : Distributed by World Scientific Publishing, c2004 | |
| Descrizione fisica: | 1 online resource (224 p.) |
| Disciplina: | 519.2 |
| Soggetto topico: | Central limit theorem |
| Information theory - Statistical methods | |
| Probabilities | |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references (p. 199-206) and index. |
| Nota di contenuto: | Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index |
| Sommario/riassunto: | This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems. |
| Titolo autorizzato: | Information theory and the central limit theorem ![]() |
| ISBN: | 1-281-86643-1 |
| 9786611866433 | |
| 1-86094-537-6 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910783482803321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |