Vai al contenuto principale della pagina
| Autore: |
Bruggeman Roelof W
|
| Titolo: |
Representations of SU(2,1) in Fourier Term Modules / / by Roelof W. Bruggeman, Roberto J. Miatello
|
| Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
| Edizione: | 1st ed. 2023. |
| Descrizione fisica: | 1 online resource (217 pages) |
| Disciplina: | 515.2433 |
| Soggetto topico: | Number theory |
| Fourier analysis | |
| Topological groups | |
| Lie groups | |
| Number Theory | |
| Fourier Analysis | |
| Topological Groups and Lie Groups | |
| Altri autori: |
MiatelloRoberto J
|
| Sommario/riassunto: | This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the “abelian” Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the “non-abelian” modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included. These results can be applied to prove a completeness result for Poincaré series in spaces of square integrable automorphic forms. Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincaré series, the book will also serve asa basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed. |
| Titolo autorizzato: | Representations of SU(2,1) in Fourier Term Modules ![]() |
| ISBN: | 9783031431920 |
| 3031431928 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910760295503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |