Vai al contenuto principale della pagina

Optical wireless communication / / Xizheng Ke, Ke Dong



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ke Xizheng Visualizza persona
Titolo: Optical wireless communication / / Xizheng Ke, Ke Dong Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (368 pages)
Disciplina: 621.3827
Soggetto topico: Optical communications
Wireless communication systems
Persona (resp. second.): DongKe
Nota di contenuto: Intro -- Contents -- 1 Optical Wireless Communication System -- 1.1 System Model of Optical Wireless Communication -- 1.1.1 Transmitter -- 1.1.2 Receiver -- 1.1.3 Channel -- 1.2 Laser Light Source -- 1.2.1 Principles of a Laser Diode -- 1.2.2 Characteristics of a Laser Diode -- 1.2.3 Nonlinearity Correction -- 1.3 Device Response Characteristics -- 1.3.1 Response Characteristics of a Semiconductor Laser -- 1.3.2 Response Characteristics of a PIN Photodetector -- 1.4 Surface Plasmon Polarization -- 1.4.1 Effect of Different Incident Light Directions on the Light Absorption Performance of Silicon Substrates -- 1.4.2 Electric Field Modulus Distribution on the x-z Cross Section of the Photodetector -- 1.5 Signal Detection -- 1.5.1 Direct Detection -- 1.5.2 Direct Detection Limit -- 1.6 Optical Amplifier -- 1.6.1 Classification of Optical Amplifiers -- 1.6.2 Erbium-Doped Fiber Amplifier -- 1.6.3 Semiconductor Optical Amplifier -- 1.7 Spatial Light to Fiber Coupling Technology -- 1.7.1 Single Lens Coupling -- 1.7.2 Array Coupling -- 1.7.3 Special Fiber Coupling -- 1.8 Optical Antenna and Telescope -- 1.8.1 Refractor Telescope -- 1.8.2 Reflecting Telescope -- 1.8.3 Catadioptric Telescope -- 1.8.4 Integrated Transceiver Optical Antenna -- 1.9 Summary and Prospects -- 1.10 Questions -- 1.11 Exercises -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.1.5 Dual-Channel Balanced Detection -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise.
2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Adaptive Optical Wavefront Correction -- 2.5.1 Wavefront Distortion Correction System -- 2.5.2 Wavefront Measurement and Correction -- 2.5.3 Wavefront-Free Measurement System -- 2.6 Summary and Prospects -- 2.7 Questions -- 2.8 Exercises -- References -- 3 Modulation, Demodulation, and Coding -- 3.1 Modulation -- 3.1.1 Basic Concepts -- 3.1.2 Analog and Digital Modulation -- 3.1.3 Direct and Indirect Modulation -- 3.1.4 Internal and External Modulation -- 3.2 External Modulation -- 3.2.1 Electro-Optic Modulation -- 3.2.2 Acousto-Optic Modulation -- 3.2.3 Magneto-Optic Modulation -- 3.3 Reverse Modulation -- 3.3.1 Cat's Eye Effect -- 3.3.2 Principle of Reverse Modulation -- 3.3.3 Cat's Eye Reverse Modulation System -- 3.4 Pulse-Like Position Modulation -- 3.4.1 Pulse-Like Position Modulation -- 3.4.2 Synchronization Technology -- 3.5 Direct Drive of Light Source -- 3.5.1 Single-Ended to Differential Converter -- 3.5.2 Level Adjustment -- 3.5.3 Laser Driver -- 3.5.4 Principle of Optical Feedback -- 3.6 Subcarrier Intensity Modulation -- 3.6.1 Subcarrier Intensity Modulation -- 3.6.2 BPSK Subcarrier Modulation -- 3.6.3 FSK Subcarrier Modulation -- 3.6.4 Intermodulation Distortion and Carrier-to-Noise Ratio -- 3.7 Orthogonal Frequency-Division Multiplexing -- 3.7.1 Basic Principles -- 3.7.2 Implementation of Discrete Fourier Transform in OFDM -- 3.7.3 Protection Interval and Cyclic Prefix -- 3.7.4 Peak-to-Average Power Ratio and Its Reduction Method -- 3.8 Space-Time Coding -- 3.8.1 Evolution of Space-Time Coding -- 3.8.2 Space-Time Coding in Optical Wireless Communication.
3.8.3 Space-Time Decoding in Optical Wireless Communication -- 3.9 Channel Coding -- 3.9.1 Channel Coding -- 3.9.2 Linear Error Correction Code -- 3.9.3 Convolutional Code -- 3.10 Summary and Prospects -- 3.11 Questions -- 3.12 Exercises -- References -- 4 Atmospheric Channel, Channel Estimation, and Channel Equalization -- 4.1 Atmospheric Attenuation -- 4.1.1 Atmospheric Attenuation Coefficient and Transmittance -- 4.1.2 Absorption and Scattering of Atmospheric Molecules -- 4.1.3 Absorption and Scattering of Atmospheric Aerosol Particles -- 4.1.4 Atmospheric Window -- 4.1.5 Estimation of the Attenuation Coefficient -- 4.1.6 Transfer Equation -- 4.2 Atmospheric Turbulence Model -- 4.2.1 Atmospheric Turbulence -- 4.2.2 Atmospheric Turbulence Channel Mode -- 4.2.3 Log-Normal Turbulence Model -- 4.2.4 Gamma-Gamma Turbulence Model -- 4.2.5 Negative Exponential Distributed Turbulence Model -- 4.2.6 Atmospheric Structure Constant -- 4.2.7 Bit Error Rate Caused by Atmospheric Turbulence -- 4.3 Diversity Reception -- 4.3.1 Maximum Ratio Combining -- 4.3.2 Equal Gain Combining -- 4.3.3 Selective Combining -- 4.4 Channel Estimation -- 4.4.1 Concept of Channel Estimation -- 4.4.2 Least Squares Channel Estimation Algorithm -- 4.4.3 MMSE Based Channel Estimation -- 4.5 Channel Equalization -- 4.5.1 ISI and Channel Equalization -- 4.5.2 Time Domain Equalization -- 4.5.3 Linear Equalization -- 4.6 Impacts of Atmospheric Turbulence on BER -- 4.7 Summary and Prospects -- 4.8 Questions -- 4.9 Exercises -- References -- 5 White LED Communication -- 5.1 Light-Emitting Principle of LED -- 5.1.1 White LEDs -- 5.1.2 Light-Emitting Principle of LED -- 5.1.3 Light-Emitting Principle of White LED -- 5.1.4 Lighting Model of White LED -- 5.2 Background Noise Model for Internet of Vehicle -- 5.3 Multiplicative Noise Model -- 5.4 Optimal Layout of Light Source.
5.5 Indoor Visible Light Channel -- 5.6 Receiver and Detection Technology -- 5.6.1 Receiver Front End -- 5.6.2 Receiving Array Design -- 5.7 Uplink of Visible Light Communication -- 5.7.1 Radio Frequency Uplink -- 5.7.2 Infrared Uplink -- 5.7.3 Laser Uplink -- 5.7.4 Visible Light Uplink -- 5.7.5 Isomorphic Uplink -- 5.8 Visible Light Communication Positioning -- 5.8.1 Received Optical Signal Strength Positioning -- 5.8.2 Fingerprint Identification Positioning -- 5.8.3 LED Identity Positioning -- 5.8.4 Visible Light Imaging Positioning -- 5.9 Summary and Prospects -- 5.10 Questions -- 5.11 Exercises -- References -- 6 Underwater Laser Communication -- 6.1 Overview of Underwater Laser Communication -- 6.2 Underwater Laser Communication System -- 6.2.1 Principle of Underwater Laser Communication -- 6.2.2 Underwater Channel -- 6.2.3 Characteristics of Underwater Laser Communication -- 6.3 Submarine Laser Communication -- 6.3.1 Forms of Submarine Laser Communication -- 6.3.2 Transmission of Each Dielectric Layer -- 6.3.3 Time Spreading -- 6.3.4 Energy Equation -- 6.3.5 Trends of Submarine Laser Communication -- 6.4 Summary and Prospects -- 6.5 Questions -- 6.6 Exercises -- References -- 7 Ultraviolet Communication -- 7.1 UV Light and Its Channel Characteristics -- 7.1.1 UV Light -- 7.1.2 Characteristics of UV Light -- 7.1.3 UV Atmospheric Channel -- 7.1.4 Characteristics of UV Atmospheric Channel -- 7.2 Characteristics of NLOS UV Transmission -- 7.2.1 Ellipsoid Coordinate System -- 7.2.2 UV Scattering Communication -- 7.2.3 NLOS Scattering Characteristics -- 7.3 Solar-Blind UV NLOS Communication Network -- 7.3.1 Wireless Mesh Communication Network -- 7.3.2 Wireless UV Mesh Communication Network -- 7.4 Summary and Prospects -- 7.5 Questions -- 7.6 Exercises -- References -- 8 Acquisition, Aiming, and Tracking Technology.
8.1 Acquisition, Pointing, and Tracking System -- 8.1.1 Concepts -- 8.1.2 Operating Principle -- 8.2 Automatic Acquisition -- 8.2.1 Open-Loop Acquisition Mode -- 8.2.2 Scanning Modes -- 8.2.3 Performance of Acquisition -- 8.3 Automatic Tracking -- 8.3.1 Tracking System -- 8.3.2 Compound-Axis Control System -- 8.3.3 Accuracy of a Coarse Tracking Unit -- 8.3.4 Fine Tracking Unit -- 8.4 Fast Alignment Using Two-Dimensional Mirror -- 8.4.1 Introduction -- 8.4.2 Theoretical Model -- 8.4.3 Experiments -- 8.5 Alignment Error -- 8.5.1 Attenuation Model of Optical Power -- 8.5.2 Geometric Attenuation Model of Gaussian Beam with Alignment Error -- 8.5.3 Average Geometric Attenuation Model with Alignment Error -- 8.6 Summary and Prospects -- 8.7 Questions -- 8.8 Exercises -- References -- 9 Partially Coherent Optical Transmission -- 9.1 Basic Parameters of a Light Beam -- 9.1.1 Emission Beam -- 9.1.2 Mutual Interference Function -- 9.1.3 Beam Spreading, Drift, and Intensity Fluctuation -- 9.2 Partially Coherent Light Model -- 9.2.1 Description of Partially Coherent Light -- 9.2.2 Partially Coherent Beam -- 9.3 Beam Propagation in Atmospheric Turbulence -- 9.3.1 Beam Spread and Beam Drift -- 9.3.2 Drift and Spread of a Horizontally Propagating Beam -- 9.3.3 Drift and Spread of a Slant Propagating Beam -- 9.3.4 Fluctuation of Angle of Arrival -- 9.3.5 Influence of Beam Drift and Spread on a Communication System -- 9.4 Summary and Prospects -- 9.5 Questions -- 9.6 Exercises -- References -- 10 Optical Communication in the Future -- 10.1 X-ray Space Optical Communication -- 10.1.1 Backgrounds -- 10.1.2 X-ray Communication System -- 10.1.3 Development Directions and Prospects -- 10.2 Orbital Angular Momentum Multiplexing Communication -- 10.2.1 Vortex Beam -- 10.2.2 Generation of a Vortex Beam -- 10.2.3 OAM Multiplexing Communication System.
10.3 Neutrino Communication.
Titolo autorizzato: Optical wireless communication  Visualizza cluster
ISBN: 981-19-0382-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910739471303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Optical Wireless Communication Theory and Technology