Vai al contenuto principale della pagina
| Titolo: |
Monitoring and Managing Multi-Hazards : Monitoring and managing multi-hazards : a multidisciplinary approach
|
| Pubblicazione: | Cham, Switzerland : , : Springer, , [2023] |
| ©2023 | |
| Descrizione fisica: | 1 online resource (363 pages) |
| Disciplina: | 910.285 |
| Soggetto topico: | Geographic information systems |
| Natural disaster warning systems | |
| Persona (resp. second.): | BhattacharyaSudip Kumar |
| DasJayanta | |
| Nota di contenuto: | Intro -- Foreword -- Preface -- Acknowledgements -- About This Book -- Key Features -- Contents -- Editors and Contributors -- Abbreviations -- Multi-hazards Monitoring -- 1 Evaluating the Multi-Hazards Threats Due to Aridity, Sea Level Upsurge in the Coastal Areas of North Tamil Nadu, South India -- Abstract -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.2.1 General Profile of the Study Area -- 1.2.2 Methods -- 1.2.2.1 Climate Data Analysis and Models -- 1.2.2.2 De Martonne Aridity Index -- 1.2.2.3 Pinna Combinative Index -- 1.2.2.4 Sea Level Rise Projections -- 1.3 Results and Discussion -- 1.3.1 Observed and Simulated Anomaly in Temperature and Rainfall Over Chengalpet -- 1.3.2 Projected Aridity Status Over Chengalpet -- 1.3.3 Pinna Combinative Index-Based Aridity Over Chengalpet -- 1.3.4 Sea Level Rise -- 1.3.5 Groundwater Status Over Chengalpet -- 1.4 Conclusions -- Acknowledgements -- References -- 2 Active Tectonics and Associated Channel Shifting Pattern of Neora River Basin, Darjeeling Himalaya -- Abstract -- 2.1 Introduction -- 2.2 Materials and Methods -- 2.2.1 Study Area -- 2.2.2 Database -- 2.2.3 Methods -- 2.2.3.1 Asymmetry Factor -- 2.2.3.2 Transverse Topographic Symmetric Factor (T Vector) -- 2.2.4 Regional Geomorphology and Geology -- 2.2.5 Results -- 2.2.6 Discussion -- 2.3 Conclusions -- References -- 3 Estimating Soil Loss Rate and Sediment Yield of the Proposed Ngololweni Earth Dam, Kingdom of Eswatini -- Abstract -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 Study Area -- 3.2.2 Data Acquisition and Processing -- 3.2.3 Meteorological and Hydrological Data Acquisition and Processing -- 3.2.4 Land Use and Land Cover Images -- 3.2.5 Validation of Land Use/land Cover Classification -- 3.2.6 Application of the RUSLE Model for Estimation of Sediment Yield in the Catchment. |
| 3.2.7 Application of Runoff Plots and Particle Size Analysis -- 3.2.8 Estimation of Soil Loss Rates -- 3.2.9 Grab Sampling and Sediment Concentration -- 3.2.10 Sediment Delivery Ratio (SDR) -- 3.2.11 Trap Efficiency and Release Efficiency of Reservoirs -- 3.2.12 Determining the Influence of Some of the RUSLE Factors on the Soil Loss Rate -- 3.2.13 Stakeholder Engagement -- 3.2.14 Multi-Criteria Analysis in the Development of Management Strategies -- 3.3 Results and Discussion -- 3.3.1 Assessing Land Use and Land Cover Changes -- 3.3.2 Accuracy Assessment of Land Use and Land Cover Classification -- 3.3.3 Estimation of Soil Loss in the Catchment Using RUSLE Model -- 3.3.4 Application of Runoff Plots Soil Loss Analysis -- 3.3.5 Particle Size Analysis -- 3.3.6 Estimation of Reservoir Sedimentation Rate and Economic Life -- 3.3.7 Proposed Soil Loss and Sedimentation Mitigation and Management Strategies -- 3.4 Conclusions -- References -- 4 Flood Susceptibility Mapping Using GIS and Multi-criteria Decision Analysis in Dibrugarh District of Assam, North-East India -- Abstract -- 4.1 Introduction -- 4.2 Methodology and Materials -- 4.2.1 Study Area -- 4.2.2 Parameters Used in the Analysis of Flood Susceptibility -- 4.2.2.1 Elevation -- 4.2.2.2 Slope -- 4.2.2.3 Drainage Density (DD) -- 4.2.2.4 Distance to River (DR) -- 4.2.2.5 Topographic Wetness Index (TWI) -- 4.2.2.6 Rainfall Intensity (RI) -- 4.2.2.7 Normalized Difference Vegetation Index (NDVI) -- 4.2.2.8 Stream Power Index (SPI) -- 4.2.3 Multicollinearity Analysis -- 4.2.4 Assignment of Weight and Rank to Each Thematic Layer -- 4.2.5 Consistency Analysis -- 4.2.6 Weighted Overlay Analysis -- 4.2.7 Sensitivity Analysis -- 4.2.7.1 Analysis of Single Parameter Sensitivity -- 4.2.7.2 Map Removal Sensitivity Analysis (MRSA) -- 4.3 Results and Discussion -- 4.3.1 Analysis of Multicollinearity. | |
| 4.3.1.1 Flood Susceptibility Zonation and Validation -- 4.3.2 Sensitivity Analysis of FSZ Map -- 4.4 Conclusions -- References -- 5 Effects of Climatic Hazards on Agriculture in the Teesta Basin of Bangladesh -- Abstract -- 5.1 Introduction -- 5.2 Data and Methods -- 5.2.1 Study Area -- 5.2.2 Sample Size and Sampling -- 5.2.3 Data Analysis and Interpretation -- 5.3 Results and Discussion -- 5.3.1 Vulnerable Location to Flood -- 5.3.2 Effects of Climatic Hazards on Agriculture -- 5.4 Conclusions -- References -- 6 Mizoram, the Capital of Landslide: A Review of Articles Published on Landslides in Mizoram, India -- Abstract -- 6.1 Introduction -- 6.2 Background -- 6.3 Discussion -- 6.4 Conclusions -- Acknowledgements -- References -- 7 Application of Geostatistical and Geospatial Techniques for Groundwater Quality Vulnerability Assessment Using Hydrogeochemical Parameters: A Case Study of NCT Delhi -- Abstract -- 7.1 Introduction -- 7.2 Study Area -- 7.3 Data and Methodology -- 7.3.1 Groundwater Vulnerability Mapping -- 7.4 Results and Discussion -- 7.4.1 Hydrogeochemical Nature of Groundwater Quality Parameters -- 7.5 Conclusions -- Acknowledgements -- References -- 8 A Literature Review of the Impact of COVID-19 Pandemic on Land Surface Temperature and Air Quality of India -- Abstract -- 8.1 Introduction -- 8.2 Land Surface Temperature -- 8.3 Air Quality -- 8.4 Impact of COVID-19 Lockdown on LST and Air Quality in India -- 8.5 Conclusions -- References -- 9 Seasonal and Inter-Annual Variation of Chlorophyll and Sea Surface Temperature in Northern and Southern Arabian Sea, India -- Abstract -- 9.1 Introduction -- 9.2 Materials and Methods -- 9.2.1 Study Area -- 9.2.2 Methods -- 9.3 Results and Discussion -- 9.3.1 Analysis of Northern Arabian Sea (NAS) -- 9.3.2 Seasonal Variation of Chlorophyll and SST (NAS). | |
| 9.3.3 Inter-Annual Variation of Chlorophyll (NAS) -- 9.3.4 Analysis of Southern Arabian Sea (SAS) -- 9.3.5 Seasonal Variation of Chlorophyll and SST (SAS) -- 9.3.6 Inter-Annual Variation Chlorophyll and SST (SAS) -- 9.3.7 Chlorophyll and SST Variation -- 9.4 Conclusions -- Acknowledgements -- References -- 10 Application of a Geospatial-Based Subjective MCDM Method for Flood Susceptibility Modeling in Teesta River Basin, West Bengal, India -- Abstract -- 10.1 Introduction -- 10.2 Study Area -- 10.3 Materials and Methods -- 10.3.1 Data Sources -- 10.3.2 Flood Influencing Factors -- 10.3.2.1 Elevation -- 10.3.2.2 Slope -- 10.3.2.3 TPI -- 10.3.2.4 SPI -- 10.3.2.5 NDVI -- 10.3.2.6 Drainage Density -- 10.3.2.7 Annual Rainfall (2003-2020) -- 10.3.2.8 Modified Normalized Difference Water Index (MNDWI) -- 10.3.2.9 Lithology -- 10.3.2.10 Distance from River -- 10.3.3 The Analytical Hierarchy Process (AHP) -- 10.3.4 ROC and AUC Analysis -- 10.4 Results and Discussion -- 10.4.1 Weightage of Flood Influencing Factors -- 10.4.2 Flood Susceptibility Map -- 10.4.3 Justification of Model Performance -- 10.5 Conclusions -- References -- 11 Flood Frequency Analysis of Baitarani River Using Three Probability Distributions -- Abstract -- 11.1 Introduction -- 11.2 Materials and Methods -- 11.2.1 Study Area -- 11.2.2 Database -- 11.2.3 Methodology -- 11.3 Results and Discussion -- 11.4 Conclusions -- References -- 12 Application of Analytical Hierarchy Process (AHP) Method to Flood Risk Assessment at Sub-Himalayan Region Using Geospatial Data: A Case Study of Alipurduar District, West Bengal, India -- Abstract -- 12.1 Introduction -- 12.2 Study Area -- 12.3 History of Floods in the Sub-Himalayan Region of the Alipurduar District -- 12.4 Geospatial Data Collection and Thematic Layer Preparation Technique -- 12.5 Identification of Multicollinearity Problems in Variables. | |
| 12.6 Normalized Weight Assignment Using Multi-Criteria Decision-Based AHP Method -- 12.7 Flood Susceptibility, Vulnerability, and Risk Zonation Map Preparation -- 12.8 Flood Inventory Map -- 12.9 Flood Susceptibility Indicators -- 12.9.1 Elevation -- 12.9.2 Slope -- 12.9.3 Topographic Wetness Index (TWI) -- 12.9.4 Topographic Position Index (TPI) -- 12.9.5 Normalized Difference Vegetation Index (NDVI) -- 12.9.6 Modified Normalized Difference Water Index (MNDWI) -- 12.9.7 Drainage Density (DD) -- 12.9.8 Distance from the River -- 12.9.9 Rainfall Intensity (RI/MFI) -- 12.9.10 Geology -- 12.9.11 Sediment Transportation Index (STI) -- 12.9.12 Stream Power Index (SPI) -- 12.10 Flood Vulnerability Indicators -- 12.10.1 Population Density -- 12.10.2 Household Density -- 12.10.3 Literacy Rate -- 12.10.4 Employment Rate -- 12.10.5 Flood Shelter Distance -- 12.10.6 Distance to Hospital -- 12.10.7 Distance to Road -- 12.10.8 Land Use and Land Cover -- 12.10.9 Sensitivity Analysis -- 12.11 Results and Discussion -- 12.11.1 Spatial Variation of Flood Susceptibility in the Alipurduar District -- 12.11.2 Spatial Variation of Flood Vulnerability in Alipurduar District -- 12.11.3 Spatial Distribution of Flood Risk -- 12.12 Model Validation -- 12.13 Conclusions -- References -- 13 GIS-Based Landslide Susceptibility Mapping: A Case Study from Kegalle District, Sri Lanka -- Abstract -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Study Area -- 13.2.2 Landslide Causative Factors -- 13.2.3 Data Acquisition and Pre-process -- 13.2.4 Analytical Hierarchy Process -- 13.2.5 Validation of the Susceptibility Model -- 13.2.6 Landslide Susceptibility Modeling -- 13.3 Results and Discussion -- 13.4 Conclusion -- Acknowledgements -- References -- 14 Landslide Susceptibility Evaluation and Analysis: A Review on Articles Published During 2000 to 2020 -- Abstract. | |
| 14.1 Introduction. | |
| Titolo autorizzato: | Monitoring and Managing Multi-Hazards ![]() |
| ISBN: | 3-031-15377-4 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910633929803321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilitĂ qui |