Vai al contenuto principale della pagina

Nanotechnology for Environmental Remediation



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Thomas Sabu Visualizza persona
Titolo: Nanotechnology for Environmental Remediation Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2022
©2022
Descrizione fisica: 1 online resource (467 pages)
Altri autori: ThomasMerin Sara  
PothenLaly A  
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Science and Technology of Nanomaterials: Introduction -- 1.1 Introduction -- 1.2 Classification of Nanomaterials -- 1.3 Classes of Nanomaterials -- 1.3.1 Organic Nanoparticles -- 1.3.2 Inorganic Nanoparticles -- 1.3.3 Carbon‐Based Nanoparticles -- 1.4 Properties of Nanomaterials -- 1.4.1 Size and Surface Area -- 1.4.2 Mechanical Properties -- 1.4.3 Optical and Electrical Properties -- 1.4.4 Magnetic Properties -- 1.5 Characterization of Nanomaterials -- 1.5.1 Surface Morphology, Surface Area, Size, and Shape of Nanoparticles -- 1.5.2 Elemental and Mineral Composition -- 1.5.3 Structures and Bonds in Nanoparticles -- 1.6 Current State of Nanotechnology -- 1.7 Safety Issues of Nanotechnology -- 1.8 Conclusion -- References -- Chapter 2 Nanoremediation: A Brief Introduction -- 2.1 Introduction -- 2.2 Mechanism of Nanoremediation -- 2.3 Nanotechnology for Disinfection -- 2.4 Nanotechnology for Removal of Heavy Metals and Ions -- 2.5 Nanotechnology for Removal of Organic Contaminants -- 2.6 Nanotechnology for Oil/Water Separation -- 2.7 Challenges in Nanoremediation -- 2.8 Conclusion -- References -- Chapter 3 Nanotechnology in Soil Remediation -- 3.1 Impact of ENMs on the Environment and Microorganisms -- 3.2 Engineered Nanomaterials in Soil Remediation -- 3.2.1 Iron‐Based Nanomaterials -- 3.2.2 TiO2‐Based Nanomaterials -- 3.2.3 Carbon‐Based Nanomaterials -- 3.2.4 Silica‐Based Nanomaterials -- 3.3 Nanotechnology in Soil Remediation -- 3.3.1 TiO2 Nanoparticles -- 3.3.2 Iron Nanoparticles -- 3.3.3 Silica Nanoparticles -- 3.3.4 Carbon‐Based Nanoparticles -- 3.3.5 Silver Nanoparticles -- 3.4 Conclusion -- References -- Chapter 4 Nanotechnology for Water Treatment: Recent Advancement in the Remediation of Organic and Inorganic Compounds -- 4.1 Introduction.
4.1.1 Classification and Synthesis Routes of Nanomaterials -- 4.2 Application of Nanotechnology -- 4.2.1 Heavy Metal Removal -- 4.2.2 Dye Removal -- 4.2.3 Organochlorine Compounds (OCCs) Removal -- 4.2.4 Inorganic Anions -- 4.3 Conclusions -- References -- Chapter 5 Nanotechnology in Air Pollution Remediation -- 5.1 Introduction -- 5.2 Recent Developments in Nanotechnology for Air Pollution Remediation -- 5.2.1 Nanoadsorbents -- 5.2.2 Nanofilters and Nanostructured Membranes -- 5.2.3 Nanocatalysts -- 5.2.4 Nanosensors -- 5.2.4.1 Detection of NO2 -- 5.2.4.2 Detection of H2S -- 5.2.4.3 Detection of SO2 -- 5.3 Adverse Impact of the Nanomaterials in the Environment -- 5.4 Future Directions -- Acknowledgment -- References -- Chapter 6 Nanomaterials in Filtration -- 6.1 Introduction -- 6.2 Nanofiber in Air Filtration -- 6.2.1 Pure Nanofiber in Air Filtration -- 6.2.2 Polymer-Nanofiber Composite in Air Filtration -- 6.2.3 MOF-Nanofiber Composite in Air Filtration -- 6.2.4 Nanomaterial-Nanofiber Hybrid in Air Filtration -- 6.2.5 Window Screening -- 6.3 Nanofiber in Wastewater Filtration -- 6.3.1 Oil-Water Separation -- 6.3.2 Antifouling -- 6.3.3 Organic and Inorganic Pollutant Removal -- 6.3.4 Microorganism Removal -- 6.4 Conclusion -- References -- Chapter 7 Nanoadsorbents for Environmental Remediation -- 7.1 Introduction -- 7.2 Properties and Synthesis of Nanomaterials -- 7.3 Different Classes of Nanoadsorbents for Removal of Contaminants from Wastewater -- 7.3.1 Carbon‐Based Nanoadsorbents -- 7.3.2 Silica‐Based Nanoadsorbents -- 7.3.3 Metal‐Based Nanoadsorbents -- 7.3.4 Polymer‐Based Nanoadsorbents -- 7.4 Conclusion -- References -- Chapter 8 Visible‐Light Photocatalytic Degradation of Heavy Metal Ion Hexavalent Chromium [Cr(VI)] -- 8.1 Introduction -- 8.2 Modifications in TiO2 for Visible‐Light Activity -- 8.2.1 Coupling of Transition Metal Oxide.
8.2.1.1 Simple Metal Oxides -- 8.2.1.2 Spinel‐Type Mixed Metal Oxides -- 8.2.2 Coupling of Metal Sulfides -- 8.2.3 Coupling of Noble Metals -- 8.2.4 Synergetic Conversion and Capacitive Deionization -- 8.3 Stability of the Photocatalyst -- 8.4 Conclusion -- 8.4.1 Current Scenario -- 8.4.2 Challenges -- 8.4.3 Future Perspectives -- References -- Chapter 9 Phytonanotechnology for Remediation of Heavy Metals and Dyes -- 9.1 Introduction -- 9.2 Environmental Pollution and Health Impacts -- 9.2.1 Heavy Metals and Associated Environmental and Public Health Issues -- 9.2.2 Dyes and Associated Environmental and Public Health Issues -- 9.3 Environmental Pollution and Remediation Strategies -- 9.3.1 Mycoremediation -- 9.3.2 Phytoremediation -- 9.3.3 Phycoremediation -- 9.3.4 Biostimulation -- 9.3.5 Rhizofiltration -- 9.4 Phyto‐nanotechnological Approach for Remediation of Environmental Pollutants -- 9.4.1 Heavy Metals Remediation Potential of Plant‐Based Nanomaterials -- 9.4.2 Dyes Remediation Potential of Plant‐Based Nanomaterials -- 9.5 Prospect and Challenges to Phytonanoremediation -- 9.6 Concluding Remarks -- References -- Chapter 10 Surface‐Functionalized Gold Nanoparticles for Environmental Remediation -- 10.1 Introduction -- 10.2 Fundamentals of Gold Nanoparticles -- 10.3 Significance of Gold Nanoparticles -- 10.4 Importance of Surface‐Functionalized Gold Nanoparticles -- 10.5 Applications of Gold Nanoparticles -- 10.6 Synthesis and Characterization of Rhodamine 6G‐Functionalized Gold Nanoparticles (Rh6G‐AuNPs) -- 10.6.1 Synthesis of Rh6G‐AuNPs by Reduction Method -- 10.6.2 Characterization of Rh6G‐AuNPs -- 10.6.2.1 X‐ray Diffraction Studies -- 10.6.2.2 Morphological Analysis -- 10.6.2.3 XPS studies -- 10.6.2.4 Raman Spectroscopy Analysis -- 10.6.2.5 Thermal Studies -- 10.7 Interaction of Rhodamine 6G‐Functionalized AuNPs with Heavy Metal Ion.
10.7.1 Selectivity and Sensitivity Studies -- 10.7.1.1 Time‐Resolved Fluorescence Measurements -- 10.7.1.2 Stability Measurements -- 10.8 Application of Rh6G‐AuNPs -- 10.8.1 Real Water Sample Analysis -- 10.8.2 Cytotoxicity Test -- 10.9 Conclusion -- Acknowledgments -- References -- Chapter 11 Metal Oxide Nanoparticles for Environmental Remediation -- 11.1 Introduction -- 11.2 Synthesis of Metal Oxide Nanoparticles -- 11.2.1 Physical Methods -- 11.2.1.1 Chemical Vapor Synthesis -- 11.2.1.2 Laser Ablation Method -- 11.2.1.3 Mechanical Milling Technique -- 11.2.2 Chemical Methods -- 11.2.2.1 Co‐precipitation Method -- 11.2.2.2 Sol-Gel Method -- 11.2.2.3 Solvothermal Method -- 11.2.3 Biological Methods -- 11.2.3.1 Plant Mediated Synthesis -- 11.2.3.2 Microbial Mediated Synthesis -- 11.3 Environmental Remediation Using MeO NPs -- 11.3.1 Adsorption -- 11.3.2 Catalysis -- 11.3.3 Antimicrobial Activity -- 11.4 Different MeO NPs in Remediation -- 11.4.1 Titanium Oxide Nanoparticles -- 11.4.2 Zinc Oxide Nanoparticles -- 11.4.3 Iron‐Based Oxides -- 11.4.4 Copper Oxide -- 11.4.5 Tin Oxide Nanoparticles -- 11.4.6 Tungsten Oxide Nanoparticles -- 11.4.7 Other Metal Oxide Nanoparticles -- 11.5 Conclusion and Prospects -- Acknowledgments -- References -- Chapter 12 Functionalized Nanoparticles for Environmental Remediation -- 12.1 Introduction -- 12.2 Nanoparticles for Environmental Remediation and Functionalization -- 12.2.1 Metallic and Metal Oxide NPs -- 12.2.1.1 Silver and Gold NPs -- 12.2.1.2 Titanium Dioxide NPs -- 12.2.1.3 Magnetic Iron Oxide NPs -- 12.2.2 Silica and Polymeric NPs -- 12.2.3 Carbon NMs -- 12.2.4 2D NMs -- 12.2.5 Micromotors -- 12.3 Nanofiltration with Functionalized NPs -- 12.4 Nanophotocatalytic Degradation with Functionalized NPs -- 12.5 Chemical Degradation of Pollutants Assisted with Functionalized NPs -- Acknowledgments -- References.
Chapter 13 Dendrimers for Environmental Remediation -- 13.1 Introduction -- 13.2 Synthesis Methods -- 13.2.1 Divergent Approach -- 13.2.2 Convergent Method -- 13.3 Physicochemical Properties of Dendrimers -- 13.4 Environmental Application of Dendrimers -- 13.4.1 Water Purification Process Using Functionalized Dendrimers -- 13.4.2 Dendrimers Application in Photocatalysis -- 13.4.3 Dendrimers Application in Soil Remediation -- 13.4.4 Dendrimers Application in Air Remediation -- 13.5 Conclusion -- Acknowledgment -- References -- Chapter 14 Nanocrystals for Environmental Remediation -- 14.1 Introduction -- 14.1.1 Environmental Remediation Techniques -- 14.1.1.1 Photocatalysis -- 14.1.2 Different Types of Nanomaterial Used for Environmental Remediation -- 14.1.2.1 Metal Oxides‐Based Nanostructure -- 14.1.2.2 Nanocomposite‐Based Photocatalyst -- 14.1.2.3 Magnetic Nanomaterial -- 14.1.3 Nanostructured Material as Efficient Antibacterial Agents -- References -- Chapter 15 Enzyme Nanoparticles for Environmental Remediation -- 15.1 Introduction -- 15.2 Sources of Various Enzymes Used for Environmental Remediation -- 15.3 Various Enzyme‐Immobilized Nanoparticles for Environmental Remediation -- 15.3.1 Magnetic Nanoparticles -- 15.3.2 Mesoporous Nanoparticles -- 15.3.3 Carbon‐Based Nanoparticles -- 15.3.4 Carbon Nanotubes -- 15.3.5 Role of Nanoparticles in Environmental Remediation -- 15.4 Importance of Enzyme Nanoparticles in Remediation -- 15.4.1 Advantages of Enzyme Nanoparticles -- 15.5 Challenges in the Bioremediation Through Enzyme Nanoparticles -- 15.6 Conclusion -- References -- Chapter 16 Nanofibers for Environmental Remediation -- 16.1 Introduction -- 16.2 Cellulose -- 16.2.1 Chemical Structure and Reactivity -- 16.2.2 The Origin of Cellulose Nanofibers -- 16.2.3 Surface Modification of Cellulose Nanofibers.
16.2.4 Treatments to Modify Cellulose Nanofiber Surface.
Titolo autorizzato: Nanotechnology for Environmental Remediation  Visualizza cluster
ISBN: 3-527-83414-1
3-527-83416-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910590098303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui