Vai al contenuto principale della pagina
Titolo: | 3D digital geological models : from terrestrial outcrops to planetary surfaces / / edited by Andrea Bistacchi, Matteo Massironi, Sophie Viseur |
Pubblicazione: | Hoboken, New Jersey : , : Wiley, , [2022] |
©2022 | |
Descrizione fisica: | 1 online resource (243 pages) |
Disciplina: | 550.284 |
Soggetto topico: | Three-dimensional imaging in geology |
Soggetto genere / forma: | Electronic books. |
Persona (resp. second.): | MassironiM (Matteo) |
ViseurSophie | |
BistacchiAndrea | |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Abstract -- 1.1 Introduction -- 1.2 DOM/SM Reconstruction and Interpretation Workflows -- 1.3 Morphometric Analysis Across Different Scales and Planets -- 1.4 3D Modelling of the Subsurface from Surface Data -- 1.5 Summary and Perspectives -- Acknowledgments -- References -- Part I DOM and SM Reconstruction and Interpretation Workflows -- Chapter 2 Abstract -- 2.1 Introduction -- 2.2 Photogrammetric Surveys and Processing for DOMs -- 2.2.1 Calculating Ground Resolution for Photogrammetric Surveys -- 2.2.2 Terrestrial Surveys for SFM -- 2.2.3 Drone Surveys for SFM -- 2.2.4 Image Quality and Pre‐processing -- 2.2.5 Photogrammetric Processing with SFM Software Packages -- 2.2.5.1 Graphical User Interface (GUI) -- 2.2.5.2 Usage of Georeferencing Data -- 2.2.5.3 Lens Distortion Models -- 2.2.5.4 GPU (Graphical Processing Unit) Computation -- 2.2.5.5 Control on Accuracy and Noise -- 2.3 Point‐Cloud vs. Textured‐Surface DOMs -- 2.3.1 Point‐Cloud DOMs -- 2.3.2 Textured‐Surface DOMs -- 2.4 Geological Interpretation of DOMs -- 2.4.1 Interpretation on Point‐Cloud DOMs -- 2.4.2 Interpretation on Textured‐Surface DOMs -- 2.5 Discussion and Conclusion -- 2.5.1 Data Acquisition: Platform -- 2.5.2 Data Acquisition: Laser Scanning vs. Photogrammetry -- 2.5.3 Pointcloud vs. Textured Surface DOMs -- 2.6 Summary and Perspectives -- Acknowledgments -- References -- Chapter 3 Abstract -- 3.1 Introduction -- 3.2 Components and Methods -- 3.2.1 Overview -- 3.2.2 PRoDB-A Geospatial Data Base for Planetary Data -- 3.2.3 PRoViP-A Computer Vision Processing Chain to Create 3D Reconstructions -- 3.2.3.1 Image‐Based 3D Reconstruction -- 3.2.3.2 Ordered Point Clouds (OPC) -- 3.2.4 Super‐Resolution Restoration (SRR) Processing. |
3.2.5 PRoGIS-Geographic Information System for Planetary Scientists -- 3.2.6 PRo3D-Virtual Exploration and Visual Analysis of 3D Products -- 3.2.6.1 Virtual Exploration -- 3.2.6.2 Tools for Measurements and Geological Annotations -- 3.2.6.3 Implementation Decisions and Technological Choices -- 3.2.7 Typical Workflow -- 3.3 Geological Interpretations of DOMs -- 3.3.1 Victoria Crater -- 3.3.1.1 Analysis at Cape Desire -- 3.3.1.2 Discussion -- 3.3.2 Yellowknife Bay -- 3.3.2.1 Analysis at Yellowknife Bay -- 3.3.2.2 Discussion -- 3.4 Conclusions -- Acknowledgments -- References -- Chapter 4 Abstract -- 4.1 Introduction -- 4.2 Vombat -- 4.2.1 Example of Workflow -- 4.2.2 Estimation of the Average Bedding Attitude -- 4.2.3 Stratigraphic Reference Frames -- 4.2.4 Vombat Objects and Their Stratigraphic Positions -- 4.2.5 Stratigraphic Constraints to Build Composite Reference Frames -- 4.2.6 Creation of Continuous Stratigraphic Logs -- 4.2.7 Regions of Interest -- 4.2.8 Input/Output and Log Plotting -- 4.3 Examples -- 4.3.1 Locating Samples on a TLS Intensity Log -- 4.3.2 Using Stratigraphic Constraints to Match Field Data -- 4.4 Discussion -- 4.5 Conclusions -- Acknowledgment -- References -- Chapter 5 Abstract -- 5.1 Introduction -- 5.2 The Geological Setting: The Saltwick Formation -- 5.3 From Geological Surface Interpretation to Statistical Subsurface 3D Models -- 5.3.1 Digital Geological Interpretation Mapping -- 5.3.2 The MPS Facies Modelling and Simulation for Subsurface Reservoirs -- 5.4 Mobile Interpretation Using Image‐to‐Geometry Techniques -- 5.4.1 Image Acquisition -- 5.4.2 Image‐to‐Geometry Registration -- 5.4.3 Image Interpretation -- 5.4.4 Office‐Based Quality Control -- 5.5 Model Construction -- 5.6 Multiple Point Statistics Simulation of the Saltwick Formation -- 5.7 Discussion -- Acknowledgments -- References -- Chapter 6 Abstract. | |
6.1 Introduction -- 6.2 The DOMStudioImage Toolbox -- 6.3 Lineament Detection Workflow -- 6.3.1 Image Preprocessing: Conversion to Grayscale and Adaptive Histogram Equalization -- 6.3.2 Lineament Detection Algorithms -- 6.3.3 MRF‐ICM: Markov Random Field ICM Segmentation -- 6.3.4 DoG: Difference of Gaussian Filter -- 6.3.5 PhSym: Phase Symmetry Line Detection -- 6.3.6 CSPhCon: Complex Shearlet Phase Congruency Ridge Detector -- 6.3.7 Lineament Thinning and Skeletonization -- 6.4 Results on Geological Images -- 6.5 Discussion -- 6.6 Conclusions -- References -- Part II Morphometric Analysis Across Different Scales and Planets -- Chapter 7 Abstract -- 7.1 Introduction -- 7.2 Test Site and Study Setting -- 7.3 Datasets -- 7.3.1 Description of a Mobile Mapping System -- 7.3.2 Point Clouds and Registration -- 7.3.3 Orthophotography -- 7.4 Point Cloud: Quality Assessment -- 7.4.1 Validation Metrics and Procedure -- 7.4.2 Point Precision for a Single Survey (Pp) -- 7.4.3 Repeatability (R) -- 7.4.4 Threshold Distance to Detect Erosion (Td) -- 7.4.5 Inter‐point Spacing Estimation -- 7.5 LiDAR Data Processing -- 7.5.1 3D to 2.5D Projection Method -- 7.5.2 Point Clouds Comparison Method -- 7.5.3 Point Clouds Segmentation and Visibility Solution -- 7.5.3.1 Classification Method -- 7.5.3.2 Visibility Solving Method (Shadow Effects) -- 7.5.4 Threshold Volume and Erosion Estimation -- 7.6 Results -- 7.6.1 Quality Assessment -- 7.6.2 Erosion Estimation Between Epochs 1 and 3 -- 7.7 Discussion -- 7.8 Conclusion -- Acknowledgments -- Appendix. Script for Unfolding Point Clouds (R) -- References -- Chapter 8 Abstract -- 8.1 Introduction -- 8.1.1 Measuring the Recession Rates of Carbonate Rocks -- 8.1.2 Lava Tubes on Earth and Mars -- 8.2 Micro‐elevation Maps and DEMs Production -- 8.2.1 Carbonate Samples Preparation and Confocal Microscopy Scan. | |
8.2.2 Stereo DEM Extraction for Mars -- 8.3 Volumes Extraction -- 8.3.1 Carbonate Rock Slabs -- 8.3.2 Mars and Earth -- 8.3.3 Validation of Volume Extraction -- 8.4 Results and Discussion -- 8.5 Conclusions -- References -- Chapter 9 Abstract -- 9.1 Introduction -- 9.2 Related Work -- 9.3 Basic Notions -- 9.3.1 Triangle Mesh -- 9.3.2 Mesh Smoothing -- 9.3.3 Curvatures over a Surface -- 9.3.4 Levels of Detail -- 9.4 Approach Based on Ring Propagation -- 9.4.1 Overview -- 9.4.2 Seeds Search -- 9.4.3 Ring Construction -- 9.4.4 Results and Validation -- 9.5 Approach Based on Circle Fitting -- 9.5.1 Description of the Approach -- 9.5.1.1 Area of Interest and Skeletonization -- 9.5.1.2 Circle Fitting -- 9.5.1.3 Circularity Criterion -- 9.5.2 Results and Validation -- 9.6 Conclusion -- Acknowledgments -- References -- Part III 3D Modelling of the Subsurface from Surface Data -- Chapter 10 Abstract -- 10.1 Introduction -- 10.2 Geological Setting -- 10.3 Methodology -- 10.3.1 Data Section -- 10.3.1.1 Definition of Terms -- 10.3.1.2 Input Data -- 10.3.2 Identification and Assessment of Uncertainties of Input Data Types -- 10.3.3 Data Interpretation: From Remote Sensing to 2D Vector Data -- 10.3.4 Data Projection onto to DEM: From 2D to 3D Data -- 10.3.5 3D Plane Construction: From 3D Intersection Lines to 3D Planes -- 10.3.5.1 3D Best‐Fit Plane from 2D Lineaments -- 10.3.5.2 Dip Calculation for Surface Points Along the Lineament -- 10.3.6 Extrapolation of Surface Data to Depth -- 10.3.7 Assessment of 3D Plane Constructions -- 10.4 Results and Discussion -- 10.4.1 Remote Sensing and 2D Lineament Data -- 10.4.1.1 Uncertainties in 2D Lineament Data -- 10.4.1.2 Discussion of Uncertainties Related to 2D Lineaments -- 10.4.2 Dip Extraction for Remote Sensing 2D Lineament Data -- 10.4.2.1 Uncertainties in Calculated Dip Values. | |
10.4.2.2 Discussion of Uncertainties Related to 2D Dip Extraction -- 10.4.3 3D Extrapolation to Depth -- 10.4.3.1 Results -- 10.4.3.2 Discussion of Uncertainties Related to Depth Projection -- 10.4.4 Validation of Proposed Extrapolation Approach -- 10.4.5 Structural 3D Model and Shear Zone Map -- 10.5 Summary Discussion and Conclusions -- Acknowledgments -- Appendix A: Topography Effect -- Appendix B: Lineament Map from Remote Sensing Data Acquisition -- Appendix C : Intersection Analysis at Tunnel Level -- References -- Chapter 11 Abstract -- 11.1 Introduction -- 11.1.1 From Terraces to Geological Cross‐sections -- 11.2 A Modelling Strategy for Onion‐Like Layers -- 11.3 Model Fitting -- 11.3.1 Errors Determination -- 11.4 Visualization and Validation of the Models -- 11.5 Conclusions -- Acknowledgments -- References -- Index -- EULA. | |
Titolo autorizzato: | 3D Digital Geological Models |
ISBN: | 1-119-31391-0 |
1-119-31392-9 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910566695703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |