Vai al contenuto principale della pagina

Big Data Analytics and Information Science for Business and Biomedical Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ahmed S. Ejaz Visualizza persona
Titolo: Big Data Analytics and Information Science for Business and Biomedical Applications Visualizza cluster
Pubblicazione: Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica: 1 online resource (246 p.)
Soggetto topico: Humanities
Social interaction
Soggetto non controllato: abdominal aortic aneurysm
ant colony system
asymptotic theory
bayesian spatial mixture model
causal and dilated convolutional neural networks
deep learning
DWD
EEG/MEG data
elastic net
emulation
ensembling
entropy-based robust EM
estimation consistency
feature fusion
feature representation
financial time series
generalized linear models
high dimension
high dimensional predictors
high dimensional time-series
high-dimensional
high-dimensional data
information complexity criteria
inverse problem
L2-consistency
Lasso
Medicare data
missingness mechanism
mixture regression
model selection
multicategory classification
nonlocal prior
nonparamteric boostrap
nuisance
penalty methods
post-selection inference
prediction
proximal algorithm
random subspaces
regularization
segmentation
sparse group lasso
sparse PCA
stepwise regression
strong selection consistency
text mining
trend analysis
unconventional likelihood
Persona (resp. second.): NathooFarouk
AhmedS. Ejaz
Sommario/riassunto: The analysis of Big Data in biomedical as well as business and financial research has drawn much attention from researchers worldwide. This book provides a platform for the deep discussion of state-of-the-art statistical methods developed for the analysis of Big Data in these areas. Both applied and theoretical contributions are showcased.
Titolo autorizzato: Big Data Analytics and Information Science for Business and Biomedical Applications  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557614803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui