Vai al contenuto principale della pagina
| Autore: |
Ahmed S. Ejaz
|
| Titolo: |
Big Data Analytics and Information Science for Business and Biomedical Applications
|
| Pubblicazione: | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica: | 1 online resource (246 p.) |
| Soggetto topico: | Humanities |
| Social interaction | |
| Soggetto non controllato: | abdominal aortic aneurysm |
| ant colony system | |
| asymptotic theory | |
| bayesian spatial mixture model | |
| causal and dilated convolutional neural networks | |
| deep learning | |
| DWD | |
| EEG/MEG data | |
| elastic net | |
| emulation | |
| ensembling | |
| entropy-based robust EM | |
| estimation consistency | |
| feature fusion | |
| feature representation | |
| financial time series | |
| generalized linear models | |
| high dimension | |
| high dimensional predictors | |
| high dimensional time-series | |
| high-dimensional | |
| high-dimensional data | |
| information complexity criteria | |
| inverse problem | |
| L2-consistency | |
| Lasso | |
| Medicare data | |
| missingness mechanism | |
| mixture regression | |
| model selection | |
| multicategory classification | |
| nonlocal prior | |
| nonparamteric boostrap | |
| nuisance | |
| penalty methods | |
| post-selection inference | |
| prediction | |
| proximal algorithm | |
| random subspaces | |
| regularization | |
| segmentation | |
| sparse group lasso | |
| sparse PCA | |
| stepwise regression | |
| strong selection consistency | |
| text mining | |
| trend analysis | |
| unconventional likelihood | |
| Persona (resp. second.): | NathooFarouk |
| AhmedS. Ejaz | |
| Sommario/riassunto: | The analysis of Big Data in biomedical as well as business and financial research has drawn much attention from researchers worldwide. This book provides a platform for the deep discussion of state-of-the-art statistical methods developed for the analysis of Big Data in these areas. Both applied and theoretical contributions are showcased. |
| Titolo autorizzato: | Big Data Analytics and Information Science for Business and Biomedical Applications ![]() |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910557614803321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |