Vai al contenuto principale della pagina

Fatigue and Fracture of Non-metallic Materials and Structures



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Spagnoli Andrea Visualizza persona
Titolo: Fatigue and Fracture of Non-metallic Materials and Structures Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica: 1 electronic resource (586 p.)
Soggetto topico: History of engineering & technology
Soggetto non controllato: Ethylene-propylene diene monomer rubber EPDM
grommet
physical properties
optimization of shape design
reliability of rocks
fatigue load
strain energy
red sandstone
distribution of strain energy
indices
multi-scale simulation
fatigue loading
road bridge decks
stagnant water
fracture toughness
blast furnace slag
particle size
compressive strength
concrete
concrete cracking
crack patterns
carbon fiber-reinforced polymers-CFRP
RC strengthening (in bending and shear)
RC beams
soft materials
polymers
strain rate
defect tolerance
digital image correlation
stress concentrators
notch blunting
lightning strike
composite reinforced panel
blow-off impulse
electric-thermal coupling
boundary effect
size effect
tensile strength
physical modelling test
rock structure
fracture
deformation
mining
neutral axis
self-healing
successive strain gauge
flexural test
bridge decks
pseudo-cracking method
data assimilation
triaxial compression test
sandstone
rock mechanics
rock fracture
energy evolution
rock-like material
crack propagation
discrete element
strain rate tensor
velocity field
jointed rock
uniaxial tension loading
numerical analysis
discrete element method
strata structural behavior
numerical simulation
tension weakening
fractures
goaf consolidation
fatigue life
modified asphalt mixture
four-point bending beam fatigue test
two-point trapezoidal beam fatigue test
overlay tester
embedment
shale rock
proppant pack
fracture width
fly ash
fineness
fracture energy
critical stress intensity factor
assessment
bridge evaluation
compressive membrane action
concrete bridges
fatigue
fatigue assessment
live loads
prestressed concrete
punching shear
scale model
CFRP
Low Velocity Impacts
Cohesive Zone Model (CZM)
Finite Element Analysis (FEA)
VUMAT
inter-laminar damage
intra-laminar damage
chemical grouting
flowing water
water plugging rate
joint roughness coefficient
damage model
mode-II microcracks
thermodynamics
reinforced concrete beam
impact and quasi-static loading
retrofitting
mineral grain shape
particle flow code
uniaxial compression simulation
rock mechanical property
mesostructure
finite element analysis
cohesive zone model
high performance concrete
fibre-reinforced high performance concrete
compressive stress
compressive modulus of elasticity
maximum compressive strain
tension
pressure-tension apparatus
nondestructive testing
ultrasonic pulse velocity
ABAQUS FEA
high-temperature wedge splitting test
fracture parameters
reducing condition
carbon-containing refractories
strain-softening
failure probability
diamond composite
material failure characteristics
reliability
rock cutting picks
civil engineering
fiber-reinforced composite laminate
multi-directional laminate
delamination
elastic interface
energy release rate
mixed-mode fracture
enhanced PG-NEM
functionally graded material (FGM)
stress intensity factor (SIF)
modified interaction integral
metallic glasses
shear bands
mechanical properties
fracture mechanism
small wind turbine
stall regulation
pitch regulation
aeroelastic simulation
Fatigue
Fracture mechanics
Structural integrity
Polymers
Composites
Ceramics
Concrete
Rock
Soft matter
Advanced materials
Persona (resp. second.): SpagnoliAndrea
Sommario/riassunto: The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches.
Titolo autorizzato: Fatigue and Fracture of Non-metallic Materials and Structures  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557474603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui