Vai al contenuto principale della pagina

Soil science : fundamentals to recent advances / / edited by Amitava Rakshit, S. K. Singh, P. C. Abhilash and Asim Biswas



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Soil science : fundamentals to recent advances / / edited by Amitava Rakshit, S. K. Singh, P. C. Abhilash and Asim Biswas Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (896 pages)
Disciplina: 631.4
Soggetto topico: Soil science
Persona (resp. second.): RakshitAmitava
Nota di contenuto: Intro -- Preface -- Contents -- Editors and Contributors -- Part I: General Concepts and Development -- 1: Managing Soil Resources for Human Health and Environmental Sustainability -- 1.1 Introduction -- 1.2 Drivers of Soil Degradation -- 1.3 Soil Degradation and Human Health -- 1.4 Strategies for the Management of Soil Resources -- 1.5 Conclusion and Way Forward -- References -- 2: Soil Organic Carbon Dynamics, Stabilization, and Environmental Implication -- 2.1 Introduction -- 2.2 Soil Organic Pools and Dynamics -- 2.3 Long-Term Application of Fertilizer and Manure on Active and Slow Pool of Carbon -- 2.4 Slow Pool of Carbon -- 2.5 Passive Pools of Carbon -- 2.6 Steady State of C and Turnover Period -- 2.7 Carbon Stabilization -- 2.8 Impact of Organic Amendments Induced GHGs Emission and Management Practices for Mitigation -- 2.9 Effect of Land Use and Management Practices on C-sequestration -- 2.10 Strategies to Enhance SOC -- 2.11 Future Research -- References -- 3: Soil Organic Carbon: Past, Present, and Future Research -- 3.1 Introduction -- 3.2 Soil Organic Carbon Research -- 3.2.1 Estimating Soil Organic Carbon Stocks -- 3.2.2 Improving Soil Organic Carbon Stocks -- 3.2.3 Monitoring Soil Organic Carbon Over Time -- 3.3 The Future of Quantifying Soil Organic Carbon Stocks -- 3.4 Conclusion -- References -- 4: Belowground Carbon Storage and Dynamics -- 4.1 Introduction -- 4.2 Importance of Soil Organic Carbon Sequestration -- 4.3 Surface Carbon Vs Deep Soil Carbon Sequestration -- 4.4 Mechanisms of SOC Sequestration -- 4.4.1 Chemical Stabilization -- 4.4.2 Physical Stabilization -- 4.4.3 Biochemical Stabilization -- 4.5 Measurement of Soil Organic Carbon Sequestration -- 4.5.1 Determining Soil Organic Carbon -- 4.5.2 Calculating Soil Organic Carbon Sequestration -- 4.5.3 Correction for Soil Mass.
4.5.4 Correction for Sand Particles and Light Fraction -- 4.5.5 Correction for Gravel and Rocks -- 4.6 Strategies for Soil Organic Carbon Sequestration -- 4.6.1 Integrated Nutrient Management -- 4.6.2 Conservation Tillage and Conservation Agriculture -- 4.6.3 Crop Diversification -- 4.6.4 Agroforestry -- 4.6.5 Prevention of Soil Erosion and Restoration of Degraded Lands -- 4.7 Conclusion -- References -- 5: Soil Biodiversity and Community Composition for Ecosystem Services -- 5.1 Introduction -- 5.2 Soil Biodiversity and Ecosystem Services -- 5.2.1 Soil Development -- 5.2.2 Organic Matter Recycling and Nutrient Availability -- 5.2.3 Carbon Cycle and Climate Control -- 5.2.4 Regulation of the Water Cycle -- 5.2.5 Soil Bioremediation -- 5.2.6 Pest Control -- 5.2.7 Human Health -- 5.3 Potential Threats to Soil Biodiversity -- 5.3.1 Soil Degradation -- 5.3.2 Inappropriate Soil and Crop Management Practices -- 5.3.3 Climate Change -- 5.3.4 Soil Pollution -- 5.3.5 GM Crops -- 5.3.6 Introduction of Exotic Species -- 5.4 Epilogue -- References -- 6: Rhizodeposition: An Unseen Teaser of Nature and Its Prospects in Nutrients Dynamics -- 6.1 Introduction -- 6.2 Rhizodeposition: An Outline -- 6.2.1 Compounds Present in Rhizodeposition and Their Functions -- 6.2.2 Factors Affecting Rhizodeposition -- 6.2.2.1 Abiotic Factors -- 6.2.2.2 Biotic Factors -- 6.2.3 Mechanisms of Release of Rhizodeposition -- 6.2.3.1 Sloughing-off of Root Border Cells -- 6.2.3.2 Secretion of Mucilage by Roots -- 6.2.3.3 Root Exudation -- 6.2.3.4 Senescence of Root Epidermis -- 6.3 Techniques: A Pathway for Quantification -- 6.3.1 Carbon Tracer Techniques -- 6.3.1.1 Pulse Labeling -- 6.3.1.2 Continuous Labeling -- 6.3.1.3 13C Natural Abundance -- 6.3.2 Labeling Plants with 15N -- 6.3.2.1 15N Dilution Technique -- 6.3.2.2 15N2 Enrichment Technique -- 6.3.2.3 Shoot Labeling Techniques.
6.3.2.4 Root Labeling Techniques -- 6.3.2.5 Atmospheric Labeling -- 6.3.2.6 Cotton-Wick Technique -- 6.4 Interaction: Plant-Rhizodeposits-Soil -- 6.4.1 Diffusion -- 6.4.2 Anion Channel -- 6.4.3 Vesicle Transport -- 6.5 Rhizodeposition: Impact in Nutrient Mobilization -- 6.5.1 Carbon Dynamics: Priming and Mineralization -- 6.5.2 Nitrogen Dynamics -- 6.5.2.1 Biological Nitrogen Fixation -- 6.5.2.2 Role of Flavonoid in N Fixation -- 6.5.3 Phosphorus Dynamics -- 6.5.3.1 Inorganic P -- 6.5.3.2 Organic P -- 6.5.3.3 P Acquisition by VAM -- 6.5.4 Potassium Dynamics -- 6.5.4.1 Mechanism of K Solubilization -- 6.5.4.2 Molecular Genetics of K Solubilizing Bacteria -- 6.5.5 Micronutrients Dynamics -- 6.5.5.1 Trace Metals Solubilization by DOM -- 6.5.5.2 Trace Metals Solubilization by Organic Acids -- 6.5.5.3 Fe Solubilization in Rhizodeposition -- 6.6 Rhizodeposition Managements Strategies -- 6.7 Conclusion -- References -- 7: Soil Indicators and Management Strategies for Environmental Sustainability -- 7.1 Background -- 7.2 Indicators of Soil and Environmental Sustainability -- 7.2.1 Soil Organic Matter -- 7.2.2 Greenhouse Gas Emissions -- 7.2.3 Soil Microbial Community Structure and Functions -- 7.3 Management Approaches for Improving Environmental Sustainability -- 7.3.1 Conservation Tillage Systems -- 7.3.2 Crop Residue Addition and Surface Mulching -- 7.3.3 Cover Cropping, Crop Rotation, and Diversification -- 7.3.4 Livestock-Integration in Cropping Systems -- 7.4 Conclusion -- References -- 8: Conservation Agriculture in Reshaping Belowground Microbial Diversity -- 8.1 Introduction -- 8.2 Belowground Microbial Diversity Under Conservation Agriculture -- Box 8.1 Expected Keystone Species Under Conservation Agriculture -- 8.3 Conservation Agriculture Based Ecology for the Sustenance of Soil Microbial Diversity -- 8.3.1 Food Security.
8.3.2 Habitat Reconstruction -- 8.3.3 Microclimate Creation -- 8.3.4 System Heterogeneity -- 8.3.5 Robust Crop Rotation -- 8.3.6 Carbon Stock and Its Eco-Functionality -- 8.3.7 System Stability -- 8.3.8 Demographic Stochasticity -- 8.3.9 Low-Input Agriculture -- 8.4 Importance of Soil Microbial Diversity in Conservation Based Agriculture -- Box 8.2 Challenges in Harnessing the Benefit from Microbial Diversity Under Conservation Agriculture -- 8.5 Strategies for Maintaining Microbial Diversity Under Conservation Agriculture -- Box 8.3 Constrains, Background and Strategies to Improve Microbial Diversity Under CA -- 8.6 Conclusion -- References -- 9: Saline and Sodic Ecosystems in the Changing World -- 9.1 Introduction -- 9.2 Global Extent of Saline Ecosystem -- 9.3 Salt-Affected Soil in Changing Climate -- 9.4 Poor Quality Water: An Ever Increasing Threat -- 9.5 Soil Organic Matter in Saline/Sodic Environment -- 9.6 Plant Nutrition in Salt-Affected Soil -- 9.7 Technological Options for Salinity Management -- 9.7.1 Inland Saline Soil with Shallow Water Table with Poor Quality Water -- 9.7.2 Costal and Deltaic Saline Soil -- 9.7.3 Bio-Drainage -- 9.7.4 Technological Options for Sodicity Management -- 9.8 Conclusions and Way Forward -- References -- 10: Approaches in Advanced Soil Elemental Extractability: Catapulting Future Soil-Plant Nutrition Research -- 10.1 Introduction -- 10.2 Addressing the Issue of Soil-Plant Nutrition Relationship Studies -- 10.2.1 Dynamics of Soil-Plant Nutrients for Agricultural Sustainability -- 10.2.2 Factors Influencing This Dynamic Soil-Plant Relationship -- 10.3 Traditional Approaches to Soil Elemental Analysis -- 10.3.1 A Brief Idea of the Different Approaches -- 10.3.2 Underlying Principles of Nutrient Extraction by Extractants -- 10.3.2.1 Intensity and Capacity Factors.
10.3.2.2 Acid or Base Extractions: Dissolution and Oxidation Phenomena -- 10.3.2.3 Chelating and Complexing Agents -- 10.3.3 Use of Different Single Extractants Protocols -- 10.3.4 The Demerit of Traditional Extractants and their Workload -- 10.4 Current Researchable Advances: Delving into Multinutrient Extractants -- 10.4.1 Concept of Multinutrient Extractant -- 10.4.2 Chronological Advances in the Field of Universal Multinutrient Extractant -- 10.4.3 Classification of Universal Extractants Used for Soil Multinutrient Research -- 10.5 Use of Multinutrient Extractants in Heavy Metal Research -- 10.6 Advanced Instrumentation Techniques and Their Analytical Workability -- 10.6.1 Atomic Absorption Spectrometry -- 10.6.2 Inductively Coupled Plasma-Optical Emission Spectrometry -- 10.6.3 Microwave Plasma-Atomic Emission Spectrometry -- 10.6.4 Inductively Coupled Plasma-Mass Spectrometry -- 10.6.5 Ion selective electrodes -- 10.7 Economic Prosperity for Advanced Soil Elemental Analysis -- 10.8 Interpretation and Validation of Multinutrient Research Findings -- 10.8.1 Significance of Critical Soil Nutrient Concentration Under Elemental Extraction Procedures -- 10.8.2 State of Soil MultiNutrient Extractants Research and its Global Scenario -- 10.8.3 Future Line of Research -- 10.9 Conclusion -- References -- 11: Role of Biochar on Greenhouse Gas Emissions and Carbon Sequestration in Soil: Opportunities for Mitigating Climate Change -- 11.1 Introduction -- 11.2 Climate Change Mitigation Options -- 11.3 What Is Biochar? -- 11.4 Biochar to Mitigate Climate Change: Complex Mechanisms -- 11.5 Biochar Stability: A Prerequisite for Carbon Sequestration in Soil -- 11.6 Aromaticity -- 11.7 Presence of Amorphous Structures and Turbostratic Crystallites -- 11.8 Presence of Rounded Structures -- 11.9 Reduced Accessibility to Decomposers -- 11.10 Particulate Nature.
11.10.1 Interactions with Mineral Surfaces.
Titolo autorizzato: Soil science  Visualizza cluster
ISBN: 981-16-0917-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910495222503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui