Vai al contenuto principale della pagina

Numerical methods for energy applications / / edited by Naser Mahdavi Tabatabaei and Nicu Bizon



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Numerical methods for energy applications / / edited by Naser Mahdavi Tabatabaei and Nicu Bizon Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (1,033 pages) : illustrations
Disciplina: 003
Soggetto topico: Energy storage - Mathematical models
Energy consumption - Mathematical models
Energy transfer - Mathematical models
Persona (resp. second.): Mahdavi TabatabaeiNaser
BizonNicu
Note generali: Includes index.
Nota di contenuto: Intro -- Foreword -- Preface -- Contents -- Contributors -- Advanced Numerical Methods -- Advanced Numerical Methods for Equations, Systems Equations and Optimization -- 1 Introduction -- 2 Generation and Propagation of Errors -- 3 Approximating Functions -- 3.1 Polynomial Interpolation -- 3.2 Numerical Differentiation -- 4 Numerical Methods for Solving Equations and Systems Equations -- 4.1 Numerical Methods for Solving Equations -- 4.2 Numerical Methods for Solving the System of Equations -- 5 Optimization Methods -- 6 Application to Matlabs -- 7 Conclusion -- References -- Analysis of Partial Differential Equations in Time Dependent Problems Using Finite Difference Methods and the Applications on Electrical Engineering -- 1 Introduction -- 2 Finite Difference Methods for Time-Dependent Problems -- 2.1 Basic Concepts -- 2.2 Properties of Finite Difference Schemes -- 2.3 Von Neumann Stability -- 2.4 The Leapfrog Scheme -- 2.5 Dissipative Schemes -- 2.6 Difference Schemes for Hyperbolic Systems in One Dimension -- 3 Finite Difference Time Domain Applications in Electrical Engineering -- 4 Conclusions -- References -- Theoretical Approaches of Finite Elements Method (FEM) -- 1 Introduction -- 2 The Principle of Finite Elements Method (FEM) -- 3 Galerkin Method -- 3.1 Weak Form of Equations of the Steady-State Magnetic Field -- 3.2 The Principle of the Galerkin Method -- 3.3 Approximation Using Finite Elements -- 3.4 Galerkin Method Using the Scalar Magnetic Potential -- 3.5 Galerkin Method Using the Magnetic Potential Vector -- 4 Numerical Example -- 5 Conclusions -- References -- Advanced Numerical Methods Based on Artificial Intelligence -- 1 Introduction -- 2 Genetic Algorithms -- 2.1 Structure of a Genetic Algorithm -- 2.2 Chromosome Structure of an Individual -- 2.3 Selection Operator -- 2.4 Crossover Operator -- 2.5 Mutation Operator.
3 Fuzzy Logic -- 3.1 Fuzzification -- 3.2 Inference -- 3.3 Defuzzification -- 4 Neural Networks -- 4.1 Activation Functions -- 4.2 Neuronal Networks Architecture -- 4.3 Training of Neural Networks -- 5 Identification of the Proper Equivalent Multi-layer Earth Structure Through a Genetic Algorithm Based AI Technique -- 5.1 Description of the Presented Application -- 5.2 Implemented Genetic Algorithm -- 5.3 Computed Equivalent Soil Models -- 6 Neural Network Implementation to Evaluate the Inductive Coupling Matrix in Case of a HVPL - MGP Electromagnetic Interference Problem -- 6.1 Description of the Studied Problem -- 6.2 Proposed Neural Network Solution -- 6.3 Matlab Implementation of Proposed Neural Network -- 6.4 Obtained NN Results -- 7 Conclusions -- References -- Numerical Methods for Solving Nonlinear Equations -- 1 Introduction -- 2 One-Variable Nonlinear Equations -- 2.1 One-Point Methods -- 2.2 Multi-point Methods -- 3 System of Nonlinear Equations -- 3.1 Gauss-Seidel Method -- 3.2 Fixed-Point Method -- 3.3 Newton Method -- 3.4 Quasi-Newton Method -- 3.5 Steepest Descent Method -- 3.6 Leven-Marquardt Method -- 3.7 Multi-step Method -- 3.8 Picard Method -- 3.9 Newton-Krylov Method -- 4 Discussion -- 5 Conclusion -- References -- Theoretical Approach to Element Free Galerkin Method and Its Mathematical Implementation -- 1 Introduction -- 2 Mathematical Formulation -- 2.1 Moving Least Square Method -- 2.2 Choice of Weight Function -- 2.3 Imposition of Boundary Conditions -- 3 Numerical Problems -- 3.1 Circular Bar Subjected to Body Force -- 3.2 Two-Dimensional Timoshenko Beam Subjected to Traction at Tip -- 4 Numerical Results and Discussions -- 4.1 Circular Bar Subjected to Body Forces -- 4.2 Two-Dimensional Timoshenko Beam Subjected to Traction at Tip -- 5 Conclusion -- References.
Theoretical Approach to Chebyshev Spectral Collocation Method and Its Mathematical Implementation -- 1 Introduction -- 2 Chebyshev Method -- 2.1 Application of Spectral Collocation Method in Fluid Dynamic Problems -- 3 Problem Formulation -- 3.1 Boundary Conditions -- 4 Base Flow Solution -- 5 Code Validation -- 6 Results and Discussions -- 6.1 Effect of Radius Ratio (η) -- 6.2 Effect of Viscous Heating -- 6.3 Effect of Buoyancy -- 7 Conclusions -- References -- Advanced Numerical Methods Based on Optimization -- 1 Introduction -- 2 Formulation of the Optimization Problem -- 3 Classification of the Optimal Problems -- 4 Types of Optimizations -- 5 Unconstrained Optimization Problems -- 6 Nonlinear Optimization Without Constraints -- 6.1 Unconstraint Optimization Problems -- 6.2 Optimization Problems with Linear Constraints and Nonlinear Objective Function -- 7 The Problems of Convex Programming -- 8 The Problems of Separable Programming -- 9 The Problems of Non-convex Programming -- 10 Nonlinear Optimization Without Constraints. The Convex Case -- 11 Optimization Methods with Constraints -- 11.1 Convex Programming. Kuhn-Tucker Optimality Conditions -- 11.2 Semi-defined Programming (SDP) -- 12 Mixed Integer Nonlinear Programming (MINLP) -- 13 Heuristic Methods -- 14 Genetic Algorithms (GAs) -- 15 Ant Colony Optimization -- 16 Simulated Annealing (SA) -- 17 Particle Swarm Optimization (PSO) -- 18 The Model of the Bee Swarm -- 19 The Firefly Model -- 20 Very Large Scale Neighborhood Search -- 21 Security-Constrained Unit Commitment (SCUC) -- 22 Conclusion -- References -- Ill-Posed Inverse Problems in Electrical Engineering Applications -- 1 Introduction -- 2 Fredholm Integral Equation -- 3 Key Performance Indicators in Inverse Problems Regularization -- 3.1 Own Observations on the Spectrum of Singular Values.
3.2 Characterization of Stability as Disturbances with the Spectrum of Singular Values -- 3.3 Picard's Condition as Performance Indicator -- 3.4 Conditioning Number as a Performance Indicator -- 4 Conditioning and Regularization in Power Flow Case Study -- 5 Intermediate Methods -- 5.1 Normal Pseudo Solution -- 5.2 Method of Collocation -- 5.3 Tikhonov Regularization Methods -- 6 Special Methods of Regularization -- 6.1 Mixed Tikhonov-TSVD -- 6.2 SVD Preconditioning -- 6.3 Conjugate Gradient Regularization Method -- 6.4 Algebraic Reconstruction Technique (ART) -- 7 Regularization as a Harmonic Reconstruction of Signals -- 8 Conclusions -- References -- Advanced Energy Systems -- Advanced Energy Systems Based on Energy Hub Concept -- 1 Introduction -- 2 Concept of Energy Hub -- 2.1 Basic Concept -- 2.2 Elements of Hub -- 2.3 Potential Benefits -- 3 Different Types of Energy Hubs -- 3.1 Micro Energy Hubs -- 3.2 Macro Energy Hubs -- 4 Conclusion -- References -- Sustainable Energy Systems Based on the Multi-energy Sources -- 1 Introduction -- 2 Non-sustainable Energy Sources -- 3 Sustainable Energy Sources -- 3.1 Solar Energy Systems -- 3.2 Wind Energy Systems -- 3.3 Hydroelectric Energy Systems -- 3.4 Geothermal Energy Systems -- 3.5 Biomass Energy Systems -- 3.6 Water Wave Energy Systems -- 3.7 Hydrogen Energy Systems -- 4 Sustainable Energy Systems Created on the Multi-energy Sources in Silifke District of Turkey -- 5 Renewable Power Plant Created in Silifke District of Turkey -- 6 Sustainable Energy Management Model -- 7 Conclusion -- References -- Modeling of Energy Systems for Smart Homes -- 1 Introduction -- 2 Energy Systems -- 2.1 Smart Homes -- 3 Modeling of Smart Home Energy Devices -- 3.1 Home Appliances -- 3.2 Home Renewable Energy Units -- 4 Optimizing Method of Smart Home Devices -- 4.1 Objective Function -- 4.2 Constraints.
4.3 Intelligent Algorithm -- 5 Numerical Results -- 6 Conclusion -- References -- Finite Volume Method Used for Numerical Investigations of Electrochemical Devices -- 1 Introduction -- 2 Basics of Finite Volume Method -- 3 Numerical Methods for Solving Linear Systems -- 4 Computational Fluid Dynamics -- 5 Numerical Investigation of an Electrochemical Device-A Study Case for PEM Fuel Cells -- 5.1 Finite Volume Method Applied for PEM Fuel Cells Investigation -- 5.2 Numerical Modeling-CFD Implementation -- 6 Conclusions -- References -- Night Operation of a Solar Chimney Integrated with Spiral Heat Exchanger -- 1 Introduction -- 2 System Description and Basic Principle -- 2.1 Conventional Solar Chimney -- 2.2 Hybrid Power Plant -- 3 Thermal Modeling of the Heat Exchanger -- 4 Mathematical Model -- 4.1 Conventional Solar Chimney -- 4.2 Hybrid Geothermal-Solar Chimney -- 5 Numerical Approach and Boundary Conditions -- 6 Results and Discussions -- 6.1 Validation -- 6.2 The Impact of Collector Radius on the Plant Performance -- 6.3 Investigation of Coil Pitch -- 6.4 Investigation of Tube Diameter -- 6.5 Geothermal Water Flow Investigation -- 6.6 Effect of Water Inlet Temperature -- 6.7 Variation of Internal Air and Geothermal Water Temperatures -- 6.8 Collector Heat Losses -- 7 Conclusion -- References -- Incorporating of IPFC in Multi-machine Power System Phillips-Heffron Model -- 1 Introduction -- 2 Nonlinear Model of Multi-machine Power System with Embedded IPFC -- 3 Linearized Model -- 4 Power System Oscillation Damping Controller -- 5 Digital Simulation -- 5.1 Stable Power System -- 5.2 Unstable Power System -- 6 Conclusion -- References -- Techno-Economical Analysis of Energy Storage Systems in Conventional Distribution Networks -- 1 Introduction -- 1.1 Motivation -- 1.2 Literature Survey -- 1.3 Research Gap -- 1.4 Chapter Organization.
2 Problem Formulation.
Titolo autorizzato: Numerical methods for energy applications  Visualizza cluster
ISBN: 3-030-62191-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484060003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Power Systems