Vai al contenuto principale della pagina
| Titolo: |
Least squares support vector machines [[electronic resource] /] / Johan A.K. Suykens ... [et al.]
|
| Pubblicazione: | River Edge, NJ, : World Scientific, 2002 |
| Descrizione fisica: | 1 online resource (308 p.) |
| Disciplina: | 006.3/1 |
| Soggetto topico: | Machine learning |
| Algorithms | |
| Kernel functions | |
| Least squares | |
| Soggetto genere / forma: | Electronic books. |
| Altri autori: |
SuykensJohan A. K
|
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Contents ; Preface ; Chapter 1 Introduction ; 1.1 Multilayer perceptron neural networks ; 1.2 Regression and classification ; 1.3 Learning and generalization ; 1.3.1 Weight decay and effective number of parameters ; 1.3.2 Ridge regression ; 1.3.3 Bayesian learning |
| 1.4 Principles of pattern recognition 1.4.1 Bayes rule and optimal classifier under Gaussian assumptions ; 1.4.2 Receiver operating characteristic ; 1.5 Dimensionality reduction methods ; 1.6 Parametric versus non-parametric approaches and RBF networks | |
| 1.7 Feedforward versus recurrent network models Chapter 2 Support Vector Machines ; 2.1 Maximal margin classification and linear SVMs ; 2.1.1 Margin ; 2.1.2 Linear SVM classifier: separable case ; 2.1.3 Linear SVM classifier: non-separable case ; 2.2 Kernel trick and Mercer condition | |
| 2.3 Nonlinear SVM classifiers 2.4 VC theory and structural risk minimization ; 2.4.1 Empirical risk versus generalization error ; 2.4.2 Structural risk minimization ; 2.5 SVMs for function estimation ; 2.5.1 SVM for linear function estimation | |
| 2.5.2 SVM for nonlinear function estimation 2.5.3 VC bound on generalization error ; 2.6 Modifications and extensions ; 2.6.1 Kernels ; 2.6.2 Extension to other convex cost functions ; 2.6.3 Algorithms ; 2.6.4 Parametric versus non-parametric approaches | |
| Chapter 3 Basic Methods of Least Squares Support Vector Machines | |
| Sommario/riassunto: | This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering P |
| Titolo autorizzato: | Least squares support vector machines ![]() |
| ISBN: | 981-277-665-6 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910451269103321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |