Vai al contenuto principale della pagina

Effective Statistical Learning Methods for Actuaries I : GLMs and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Denuit Michel Visualizza persona
Titolo: Effective Statistical Learning Methods for Actuaries I : GLMs and Extensions / / by Michel Denuit, Donatien Hainaut, Julien Trufin Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (XVI, 441 p. 82 illus., 23 illus. in color.)
Disciplina: 368.01
Soggetto topico: Actuarial science
Statistics
Actuarial Sciences
Statistics for Business, Management, Economics, Finance, Insurance
Matemàtica actuarial
Assegurances de vida
Estadística
Xarxes neuronals (Informàtica)
Models matemàtics
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): HainautDonatien
TrufinJulien
Nota di contenuto: Preface -- Part I: LOSS MODELS.-1. Insurance Risk Classification.-Exponential Dispersion (ED) Distributions.-3.-Maximum Likelihood Estimation.-Part II LINEAR MODELS.-4. Generalized Linear Models (GLMs) -- 5.-Over-dispersion, credibility adjustments, mixed models, and regularization.-Part III ADDITIVE MODELS -- 6 Generalized Additive Models (GAMs) -- 7. Beyond Mean Modeling: Double GLMs and GAMs for Location, Scale and Shape (GAMLSS) -- Part IV SPECIAL TOPICS -- 8. Some Generalized Non-Linear Models (GNMs) -- 9 Extreme Value Models -- References.
Sommario/riassunto: This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.
Titolo autorizzato: Effective Statistical Learning Methods for Actuaries I  Visualizza cluster
ISBN: 9783030258207
3030258203
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910349321203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Actuarial Lecture Notes, . 2523-3289