Vai al contenuto principale della pagina
Titolo: | Clustering Methods for Big Data Analytics : Techniques, Toolboxes and Applications / / edited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Edizione: | 1st ed. 2019. |
Descrizione fisica: | 1 online resource (IX, 187 p. 63 illus., 31 illus. in color.) |
Disciplina: | 621.382 |
Soggetto topico: | Electrical engineering |
Computational intelligence | |
Data mining | |
Big data | |
Pattern perception | |
Communications Engineering, Networks | |
Computational Intelligence | |
Data Mining and Knowledge Discovery | |
Big Data/Analytics | |
Pattern Recognition | |
Persona (resp. second.): | NasraouiOlfa |
Ben N'CirChiheb-Eddine | |
Nota di contenuto: | Introduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion. |
Sommario/riassunto: | This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. . |
Titolo autorizzato: | Clustering Methods for Big Data Analytics |
ISBN: | 3-319-97864-0 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910337659403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |