Vai al contenuto principale della pagina
Autore: | Du Ke-Lin |
Titolo: | Neural Networks and Statistical Learning / / by Ke-Lin Du, M. N. S. Swamy |
Pubblicazione: | London : , : Springer London : , : Imprint : Springer, , 2014 |
Edizione: | 1st ed. 2014. |
Descrizione fisica: | 1 online resource (XXVII, 824 p. 166 illus., 68 illus. in color.) |
Disciplina: | 006.32 |
Soggetto topico: | Computational intelligence |
Neural networks (Computer science) | |
Data mining | |
Pattern perception | |
Computational Intelligence | |
Mathematical Models of Cognitive Processes and Neural Networks | |
Data Mining and Knowledge Discovery | |
Pattern Recognition | |
Persona (resp. second.): | SwamyM. N. S |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di contenuto: | Introduction -- Fundamentals of Machine Learning -- Perceptrons -- Multilayer perceptrons: architecture and error backpropagation -- Multilayer perceptrons: other learning techniques -- Hopfield networks, simulated annealing and chaotic neural networks -- Associative memory networks -- Clustering I: Basic clustering models and algorithms -- Clustering II: topics in clustering -- Radial basis function networks -- Recurrent neural networks -- Principal component analysis -- Nonnegative matrix factorization and compressed sensing -- Independent component analysis -- Discriminant analysis -- Support vector machines -- Other kernel methods -- Reinforcement learning -- Probabilistic and Bayesian networks -- Combining multiple learners: data fusion and ensemble learning -- Introduction of fuzzy sets and logic -- Neurofuzzy systems -- Neural circuits -- Pattern recognition for biometrics and bioinformatics -- Data mining. |
Sommario/riassunto: | Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining. |
Titolo autorizzato: | Neural Networks and Statistical Learning |
ISBN: | 1-4471-5571-8 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910299755103321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |