Vai al contenuto principale della pagina
Autore: | Nedjalkov Mihail |
Titolo: | Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr |
Pubblicazione: | Cham, Switzerland : , : Birkhäuser, , [2021] |
©2021 | |
Descrizione fisica: | 1 online resource (xvi, 214 pages) : illustrations |
Disciplina: | 574.192 |
Soggetto topico: | Electron transport - Mathematical models |
Microelectronics - Mathematical models | |
Nanoelectronics - Mathematical models | |
Charge carrier processes | |
Transport d'electrons | |
Microelectrònica | |
Nanoelectrònica | |
Models matemàtics | |
Soggetto genere / forma: | Llibres electrònics |
Persona (resp. second.): | DimovIvan <1963-> |
SelberherrSiegfried <1955-> | |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Intro -- Preface -- Introduction to the Parts -- Contents -- Part I Aspects of Electron Transport Modeling -- 1 Concepts of Device Modeling -- 1.1 About Microelectronics -- 1.2 The Role of Modeling -- 1.3 Modeling of Semiconductor Devices -- 1.3.1 Basic Modules -- 1.3.2 Transport Models -- 1.3.3 Device Modeling: Aspects -- 2 The Semiconductor Model: Fundamentals -- 2.1 Crystal Lattice Electrons -- 2.1.1 Band Structure -- 2.1.2 Carrier Dynamics -- 2.1.3 Charge Transport -- 2.2 Lattice Imperfections -- 2.2.1 Phonons -- 2.2.2 Phonon Scattering -- 3 Transport Theories in Phase Space -- 3.1 Classical Transport: Boltzmann Equation -- 3.1.1 Phenomenological Derivation -- 3.1.2 Parametrization -- 3.1.3 Classical Distribution Function -- 3.2 Quantum Transport: Wigner Equation -- 3.2.1 Operator Mechanics -- 3.2.2 Quantum Mechanics in Phase Space -- 3.2.3 Derivation of the Wigner Equation -- 3.2.4 Properties of the Wigner Equation -- 3.2.5 Classical Limit of the Wigner Equation -- 4 Monte Carlo Computing -- 4.1 The Monte Carlo Method for Solving Integrals -- 4.2 The Monte Carlo Method for Solving Integral Equations -- 4.3 Monte Carlo Integration and Variance Analysis -- Part II Stochastic Algorithms for Boltzmann Transport -- 5 Homogeneous Transport: Empirical Approach -- 5.1 Single-Particle Algorithm -- 5.1.1 Single-Particle Trajectory -- 5.1.2 Mean Values -- 5.1.3 Concept of Self-Scattering -- 5.1.4 Boundary Conditions -- 5.2 Ensemble Algorithm -- 5.3 Algorithms for Statistical Enhancement -- 6 Homogeneous Transport: Stochastic Approach -- 6.1 Trajectory Integral Algorithm -- 6.2 Backward Algorithm -- 6.3 Iteration Approach -- 6.3.1 Derivation of the Backward Algorithm -- 6.3.2 Derivation of Empirical Algorithms -- 6.3.3 Featured Applications -- 7 Small Signal Analysis -- 7.1 Empirical Approach -- 7.1.1 Stationary Algorithms. |
7.1.2 Time Dependent Algorithms -- 7.2 Iteration Approach: Stochastic Model -- 7.3 Iteration Approach: Generalizing the Empirical Algorithms -- 7.3.1 Derivation of Finite Difference Algorithms -- 7.3.2 Derivation of Collinear Perturbation Algorithms -- 8 Inhomogeneous Stationary Transport -- 8.1 Stationary Conditions -- 8.2 Iteration Approach: Forward Stochastic Model -- 8.2.1 Adjoint Equation -- 8.2.2 Boundary Conditions -- 8.3 Iteration Approach: Single-Particle Algorithm and Ergodicity -- 8.3.1 Averaging on Before-Scattering States -- 8.3.2 Averaging in Time: Ergodicity -- 8.3.3 The Choice of Boundary -- 8.4 Iteration Approach: Trajectory Splitting Algorithm -- 8.5 Iteration Approach: Modified Backward Algorithm -- 8.6 A Comparison of Forward and Backward Approaches -- 9 General Transport: Self-Consistent Mixed Problem -- 9.1 Formulation of the Problem -- 9.2 The Adjoint Equation -- 9.3 Initial and Boundary Conditions -- 9.3.1 Initial Condition -- 9.3.2 Boundary Conditions -- 9.3.3 Carrier Number Fluctuations -- 9.4 Stochastic Device Modeling: Features -- 10 Event Biasing -- 10.1 Biasing of Initial and Boundary Conditions -- 10.1.1 Initial Condition -- 10.1.2 Boundary Conditions -- 10.2 Biasing of the Natural Evolution -- 10.2.1 Free Flight -- 10.2.2 Phonon Scattering -- 10.3 Self-Consistent Event Biasing -- Part III Stochastic Algorithms for Quantum Transport -- 11 Wigner Function Modeling -- 12 Evolution in a Quantum Wire -- 12.1 Formulation of the Problem -- 12.2 Generalized Wigner Equation -- 12.3 Equation of Motion of the Diagonal Elements -- 12.4 Closure at First-Off-Diagonal Level -- 12.5 Closure at Second-Off-Diagonal Level -- 12.5.1 Approximation of the fFOD+ Equation -- 12.5.1.1 Contribution from fSOD++, -- 12.5.1.2 Contribution from fSOD+,- -- 12.5.1.3 Correction from fSOD+-, -- 12.5.1.4 Correction from fSOD+,+. | |
Titolo autorizzato: | Stochastic approaches to electron transport in micro- and nanostructures |
ISBN: | 3-030-67917-9 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 996466553703316 |
Lo trovi qui: | Univ. di Salerno |
Opac: | Controlla la disponibilità qui |